Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter

Aaron T. Bozzi, Lukas B. Bane, Wilhelm A. Weihofen, Abhishek Singharoy, Eduardo R. Guillen, Hidde L. Ploegh, Klaus Schulten, Rachelle Gaudet

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state.

Original languageEnglish (US)
Pages (from-to)2102-2114
Number of pages13
JournalStructure
Volume24
Issue number12
DOIs
StatePublished - Dec 6 2016
Externally publishedYes

Fingerprint

Metals
Deinococcus
Mutation
Dietary Iron
Manganese
Glycine
Cysteine
Arginine
Anemia
Mammals
Binding Sites
natural resistance-associated macrophage protein 1
Bacteria

Keywords

  • crystallography
  • cysteine accessibility
  • divalent metal transporter
  • LeuT fold
  • microcytic anemia
  • MntH
  • natural resistance-associated macrophage protein
  • Nramp
  • transition metals

ASJC Scopus subject areas

  • Structural Biology
  • Molecular Biology

Cite this

Bozzi, A. T., Bane, L. B., Weihofen, W. A., Singharoy, A., Guillen, E. R., Ploegh, H. L., ... Gaudet, R. (2016). Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter. Structure, 24(12), 2102-2114. https://doi.org/10.1016/j.str.2016.09.017

Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter. / Bozzi, Aaron T.; Bane, Lukas B.; Weihofen, Wilhelm A.; Singharoy, Abhishek; Guillen, Eduardo R.; Ploegh, Hidde L.; Schulten, Klaus; Gaudet, Rachelle.

In: Structure, Vol. 24, No. 12, 06.12.2016, p. 2102-2114.

Research output: Contribution to journalArticle

Bozzi, AT, Bane, LB, Weihofen, WA, Singharoy, A, Guillen, ER, Ploegh, HL, Schulten, K & Gaudet, R 2016, 'Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter', Structure, vol. 24, no. 12, pp. 2102-2114. https://doi.org/10.1016/j.str.2016.09.017
Bozzi, Aaron T. ; Bane, Lukas B. ; Weihofen, Wilhelm A. ; Singharoy, Abhishek ; Guillen, Eduardo R. ; Ploegh, Hidde L. ; Schulten, Klaus ; Gaudet, Rachelle. / Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter. In: Structure. 2016 ; Vol. 24, No. 12. pp. 2102-2114.
@article{094b949c11a24ad4a681e5a4d44ccb67,
title = "Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter",
abstract = "The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state.",
keywords = "crystallography, cysteine accessibility, divalent metal transporter, LeuT fold, microcytic anemia, MntH, natural resistance-associated macrophage protein, Nramp, transition metals",
author = "Bozzi, {Aaron T.} and Bane, {Lukas B.} and Weihofen, {Wilhelm A.} and Abhishek Singharoy and Guillen, {Eduardo R.} and Ploegh, {Hidde L.} and Klaus Schulten and Rachelle Gaudet",
year = "2016",
month = "12",
day = "6",
doi = "10.1016/j.str.2016.09.017",
language = "English (US)",
volume = "24",
pages = "2102--2114",
journal = "Structure with Folding & design",
issn = "0969-2126",
publisher = "Cell Press",
number = "12",

}

TY - JOUR

T1 - Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter

AU - Bozzi, Aaron T.

AU - Bane, Lukas B.

AU - Weihofen, Wilhelm A.

AU - Singharoy, Abhishek

AU - Guillen, Eduardo R.

AU - Ploegh, Hidde L.

AU - Schulten, Klaus

AU - Gaudet, Rachelle

PY - 2016/12/6

Y1 - 2016/12/6

N2 - The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state.

AB - The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state.

KW - crystallography

KW - cysteine accessibility

KW - divalent metal transporter

KW - LeuT fold

KW - microcytic anemia

KW - MntH

KW - natural resistance-associated macrophage protein

KW - Nramp

KW - transition metals

UR - http://www.scopus.com/inward/record.url?scp=85002761056&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85002761056&partnerID=8YFLogxK

U2 - 10.1016/j.str.2016.09.017

DO - 10.1016/j.str.2016.09.017

M3 - Article

C2 - 27839948

AN - SCOPUS:85002761056

VL - 24

SP - 2102

EP - 2114

JO - Structure with Folding & design

JF - Structure with Folding & design

SN - 0969-2126

IS - 12

ER -