Convergence proofs for Simulated Annealing falsification of safety properties

Houssam Abbas, Georgios Fainekos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

The problem of falsifying temporal logic properties of hybrid automata can be posed as a minimization problem by utilizing quantitative semantics for temporal logics. Previous work has used a variation of Simulated Annealing (SA) to solve the problem. While SA is known to converge to the global minimum of a continuous objective function over a closed and bounded search space, or when the search space is discrete, there do not exist convergence proofs for the cases addressed in that previous work. Namely, when the objective function is discontinuous, and when the objective is a vector-valued function. In this paper, we derive conditions and we prove convergence of SA to a global minimum in both scenarios. We also consider matters affecting the practical performance of SA.

Original languageEnglish (US)
Title of host publication2012 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012
Pages1594-1601
Number of pages8
DOIs
StatePublished - 2012
Event2012 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012 - Monticello, IL, United States
Duration: Oct 1 2012Oct 5 2012

Publication series

Name2012 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012

Other

Other2012 50th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2012
Country/TerritoryUnited States
CityMonticello, IL
Period10/1/1210/5/12

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Convergence proofs for Simulated Annealing falsification of safety properties'. Together they form a unique fingerprint.

Cite this