Convalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates

Stephen Massia, Jeffrey A. Hubbell

Research output: Contribution to journalArticle

331 Citations (Scopus)

Abstract

The synthetic peptides Gly-Arg-Gly-Asp-Tyr and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, which contain Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR), the ligands for two important classes of cell adhesion receptors, were covalently coupled to a nonadhesive modified glass surface by the N-terminal Gly. The N-terminal Gly served as a spacer, and the C-terminal Y served as a site for radioiodination. These modified substrates supported the adhesion and spreading of cultured human foreskin fibroblasts (HFFs) independently of adsorbed proteins and, it was demonstrated that a covalently immobilized YIGSR-containing peptide has biological activity. The surface concentration of grafted peptide on the glass was measured by 125I radiolabeling and was 12.1 pmol/cm2. HFFs spread on both immobilized peptide substrates, but at much slower rates on grafted YIGSR glass surfaces than on the RGD-containing substrates. Cells formed focal contacts on the RGD-derivatized substrates in the presence or absence of serum. Focal contacts formed on the YIGSR-grafted surfaces only when serum was present in the medium and had morphologies different from those observed on the RGD-containing substrates. Serum influenced the organization of microfilaments and the extent of spreading of adherent cells, although adsorption of adhesion proteins was minimal on all substrates. This derivatization method produced chemically stable substrates which may be useful in studying receptor-mediated cell adhesion, as the quantity of peptide available at the surface may be precisely measured and controlled.

Original languageEnglish (US)
Pages (from-to)292-301
Number of pages10
JournalAnalytical Biochemistry
Volume187
Issue number2
DOIs
StatePublished - 1990
Externally publishedYes

Fingerprint

tyrosyl-isoleucyl-glycyl-seryl-arginine
Immobilization
Adhesives
Peptides
Glass
Substrates
Foreskin
Focal Adhesions
glycyl-arginyl-glycyl-aspartyl-tyrosine
Cell Adhesion
Cell adhesion
Fibroblasts
Serum
Adhesion
Actin Cytoskeleton
Adsorption
Proteins
Bioactivity
Ligands

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Cite this

@article{5c9fde6717784c10a927eee77fff8a1d,
title = "Convalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates",
abstract = "The synthetic peptides Gly-Arg-Gly-Asp-Tyr and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, which contain Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR), the ligands for two important classes of cell adhesion receptors, were covalently coupled to a nonadhesive modified glass surface by the N-terminal Gly. The N-terminal Gly served as a spacer, and the C-terminal Y served as a site for radioiodination. These modified substrates supported the adhesion and spreading of cultured human foreskin fibroblasts (HFFs) independently of adsorbed proteins and, it was demonstrated that a covalently immobilized YIGSR-containing peptide has biological activity. The surface concentration of grafted peptide on the glass was measured by 125I radiolabeling and was 12.1 pmol/cm2. HFFs spread on both immobilized peptide substrates, but at much slower rates on grafted YIGSR glass surfaces than on the RGD-containing substrates. Cells formed focal contacts on the RGD-derivatized substrates in the presence or absence of serum. Focal contacts formed on the YIGSR-grafted surfaces only when serum was present in the medium and had morphologies different from those observed on the RGD-containing substrates. Serum influenced the organization of microfilaments and the extent of spreading of adherent cells, although adsorption of adhesion proteins was minimal on all substrates. This derivatization method produced chemically stable substrates which may be useful in studying receptor-mediated cell adhesion, as the quantity of peptide available at the surface may be precisely measured and controlled.",
author = "Stephen Massia and Hubbell, {Jeffrey A.}",
year = "1990",
doi = "10.1016/0003-2697(90)90459-M",
language = "English (US)",
volume = "187",
pages = "292--301",
journal = "Analytical Biochemistry",
issn = "0003-2697",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Convalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates

AU - Massia, Stephen

AU - Hubbell, Jeffrey A.

PY - 1990

Y1 - 1990

N2 - The synthetic peptides Gly-Arg-Gly-Asp-Tyr and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, which contain Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR), the ligands for two important classes of cell adhesion receptors, were covalently coupled to a nonadhesive modified glass surface by the N-terminal Gly. The N-terminal Gly served as a spacer, and the C-terminal Y served as a site for radioiodination. These modified substrates supported the adhesion and spreading of cultured human foreskin fibroblasts (HFFs) independently of adsorbed proteins and, it was demonstrated that a covalently immobilized YIGSR-containing peptide has biological activity. The surface concentration of grafted peptide on the glass was measured by 125I radiolabeling and was 12.1 pmol/cm2. HFFs spread on both immobilized peptide substrates, but at much slower rates on grafted YIGSR glass surfaces than on the RGD-containing substrates. Cells formed focal contacts on the RGD-derivatized substrates in the presence or absence of serum. Focal contacts formed on the YIGSR-grafted surfaces only when serum was present in the medium and had morphologies different from those observed on the RGD-containing substrates. Serum influenced the organization of microfilaments and the extent of spreading of adherent cells, although adsorption of adhesion proteins was minimal on all substrates. This derivatization method produced chemically stable substrates which may be useful in studying receptor-mediated cell adhesion, as the quantity of peptide available at the surface may be precisely measured and controlled.

AB - The synthetic peptides Gly-Arg-Gly-Asp-Tyr and Gly-Tyr-Ile-Gly-Ser-Arg-Tyr, which contain Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR), the ligands for two important classes of cell adhesion receptors, were covalently coupled to a nonadhesive modified glass surface by the N-terminal Gly. The N-terminal Gly served as a spacer, and the C-terminal Y served as a site for radioiodination. These modified substrates supported the adhesion and spreading of cultured human foreskin fibroblasts (HFFs) independently of adsorbed proteins and, it was demonstrated that a covalently immobilized YIGSR-containing peptide has biological activity. The surface concentration of grafted peptide on the glass was measured by 125I radiolabeling and was 12.1 pmol/cm2. HFFs spread on both immobilized peptide substrates, but at much slower rates on grafted YIGSR glass surfaces than on the RGD-containing substrates. Cells formed focal contacts on the RGD-derivatized substrates in the presence or absence of serum. Focal contacts formed on the YIGSR-grafted surfaces only when serum was present in the medium and had morphologies different from those observed on the RGD-containing substrates. Serum influenced the organization of microfilaments and the extent of spreading of adherent cells, although adsorption of adhesion proteins was minimal on all substrates. This derivatization method produced chemically stable substrates which may be useful in studying receptor-mediated cell adhesion, as the quantity of peptide available at the surface may be precisely measured and controlled.

UR - http://www.scopus.com/inward/record.url?scp=0025300277&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025300277&partnerID=8YFLogxK

U2 - 10.1016/0003-2697(90)90459-M

DO - 10.1016/0003-2697(90)90459-M

M3 - Article

C2 - 2382830

AN - SCOPUS:0025300277

VL - 187

SP - 292

EP - 301

JO - Analytical Biochemistry

JF - Analytical Biochemistry

SN - 0003-2697

IS - 2

ER -