Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal-oxide-semiconductor on flexible plastic substrates

Michael A. Marrs, Curtis D. Moyer, Edward J. Bawolek, Rita J. Cordova, Jovan Trujillo, Gregory B. Raupp, Bryan D. Vogt

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Amorphous oxide semiconductor thin-film transistors on flexible plastic substrates typically suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based on a dual active layer enables significant improvements in both performance and stability. Device fabrication occurs below 200 °C on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual-active-layer architecture allows for adjustment in the saturation mobility and threshold voltage stability without the requirement of high-temperature annealing, which is not compatible with flexible plastic substrates. The device performance and stability is strongly dependent on the composition of the mixed metal oxide; this dependence provides a simple route to independently adjust the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 to 18.0 cm2/V·s, whereas the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors in the near future.

Original languageEnglish (US)
Article number5985515
Pages (from-to)3428-3434
Number of pages7
JournalIEEE Transactions on Electron Devices
Volume58
Issue number10
DOIs
StatePublished - Oct 2011
Externally publishedYes

Keywords

  • Flexible electronics
  • indium gallium zinc oxide (IGZO) thin-film transistor (TFT)
  • organic light-emitting diode (OLED)
  • polyethylene naphthalate (PEN)

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal-oxide-semiconductor on flexible plastic substrates'. Together they form a unique fingerprint.

Cite this