Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants

Marek L. Borowiec, Christian Rabeling, Seán G. Brady, Brian L. Fisher, Ted R. Schultz, Philip S. Ward

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Knowledge of the internal phylogeny and evolutionary history of ants (Formicidae), the world's most species-rich clade of eusocial organisms, has dramatically improved since the advent of molecular phylogenetics. A number of relationships at the subfamily level, however, remain uncertain. Key unresolved issues include placement of the root of the ant tree of life and the relationships among the so-called poneroid subfamilies. Here we assemble a new data set to attempt a resolution of these two problems and carry out divergence dating, focusing on the age of the root node of crown Formicidae. For the phylogenetic analyses we included data from 110 ant species, including the key species Martialis heureka. We focused taxon sampling on non-formicoid lineages of ants to gain insight about deep nodes in the ant phylogeny. For divergence dating we retained a subset of 62 extant taxa and 42 fossils in order to approximate diversified sampling in the context of the fossilized birth-death process. We sequenced 11 nuclear gene fragments for a total of ∼7.5 kb and investigated the DNA sequence data for the presence of among-taxon compositional heterogeneity, a property known to mislead phylogenetic inference, and for its potential to affect the rooting of the ant phylogeny. We found sequences of the Leptanillinae and several outgroup taxa to be rich in adenine and thymine (51% average AT content) compared to the remaining ants (45% average). To investigate whether this heterogeneity could bias phylogenetic inference we performed outgroup removal experiments, analysis of compositionally homogeneous sites, and a simulation study. We found that compositional heterogeneity indeed appears to affect the placement of the root of the ant tree but has limited impact on more recent nodes. Our findings have implications for outgroup choice in phylogenetics, which should be made not only on the basis of close relationship to the ingroup, but should also take into account sequence divergence and other properties relative to the ingroup. We put forward a hypothesis regarding the rooting of the ant phylogeny, in which Martialis and the Leptanillinae together constitute a clade that is sister to all other ants. After correcting for compositional heterogeneity this emerges as the best-supported hypothesis of relationships at deep nodes in the ant tree. The results of our divergence dating under the fossilized birth-death process and diversified sampling suggest that the crown Formicidae originated during the Albian or Aptian ages of the Lower Cretaceous (103–124 Ma). In addition, we found support for monophyletic poneroids comprising the subfamilies Agroecomyrmecinae, Amblyoponinae, Apomyrminae, Paraponerinae, Ponerinae, and Proceratiinae, and well-supported relationships among these subfamilies except for the placement of Proceratiinae and (Amblyoponinae + Apomyrminae). Our phylogeny also highlights the non-monophyly of several ant genera, including Protanilla and Leptanilla in the Leptanillinae, Proceratium in the Proceratiinae, and Cryptopone, Euponera, and Mesoponera within the Ponerinae.

Original languageEnglish (US)
Pages (from-to)111-121
Number of pages11
JournalMolecular Phylogenetics and Evolution
Volume134
DOIs
StatePublished - May 1 2019

Fingerprint

Ants
Phylogeny
ant
Formicidae
phylogeny
phylogenetics
divergence
rooting
Crowns
root crown
Martialis heureka
sampling
Protanilla
Martialis
Proceratium
Parturition
removal experiment
Thymine
death
Adenine

Keywords

  • Diversified sampling
  • Fossilized birth-death process
  • Phylogenetics
  • Systematic bias
  • Systematics

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics

Cite this

Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. / Borowiec, Marek L.; Rabeling, Christian; Brady, Seán G.; Fisher, Brian L.; Schultz, Ted R.; Ward, Philip S.

In: Molecular Phylogenetics and Evolution, Vol. 134, 01.05.2019, p. 111-121.

Research output: Contribution to journalArticle

Borowiec, Marek L. ; Rabeling, Christian ; Brady, Seán G. ; Fisher, Brian L. ; Schultz, Ted R. ; Ward, Philip S. / Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. In: Molecular Phylogenetics and Evolution. 2019 ; Vol. 134. pp. 111-121.
@article{687094d9110941abb6a7a2ae8b84451f,
title = "Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants",
abstract = "Knowledge of the internal phylogeny and evolutionary history of ants (Formicidae), the world's most species-rich clade of eusocial organisms, has dramatically improved since the advent of molecular phylogenetics. A number of relationships at the subfamily level, however, remain uncertain. Key unresolved issues include placement of the root of the ant tree of life and the relationships among the so-called poneroid subfamilies. Here we assemble a new data set to attempt a resolution of these two problems and carry out divergence dating, focusing on the age of the root node of crown Formicidae. For the phylogenetic analyses we included data from 110 ant species, including the key species Martialis heureka. We focused taxon sampling on non-formicoid lineages of ants to gain insight about deep nodes in the ant phylogeny. For divergence dating we retained a subset of 62 extant taxa and 42 fossils in order to approximate diversified sampling in the context of the fossilized birth-death process. We sequenced 11 nuclear gene fragments for a total of ∼7.5 kb and investigated the DNA sequence data for the presence of among-taxon compositional heterogeneity, a property known to mislead phylogenetic inference, and for its potential to affect the rooting of the ant phylogeny. We found sequences of the Leptanillinae and several outgroup taxa to be rich in adenine and thymine (51{\%} average AT content) compared to the remaining ants (45{\%} average). To investigate whether this heterogeneity could bias phylogenetic inference we performed outgroup removal experiments, analysis of compositionally homogeneous sites, and a simulation study. We found that compositional heterogeneity indeed appears to affect the placement of the root of the ant tree but has limited impact on more recent nodes. Our findings have implications for outgroup choice in phylogenetics, which should be made not only on the basis of close relationship to the ingroup, but should also take into account sequence divergence and other properties relative to the ingroup. We put forward a hypothesis regarding the rooting of the ant phylogeny, in which Martialis and the Leptanillinae together constitute a clade that is sister to all other ants. After correcting for compositional heterogeneity this emerges as the best-supported hypothesis of relationships at deep nodes in the ant tree. The results of our divergence dating under the fossilized birth-death process and diversified sampling suggest that the crown Formicidae originated during the Albian or Aptian ages of the Lower Cretaceous (103–124 Ma). In addition, we found support for monophyletic poneroids comprising the subfamilies Agroecomyrmecinae, Amblyoponinae, Apomyrminae, Paraponerinae, Ponerinae, and Proceratiinae, and well-supported relationships among these subfamilies except for the placement of Proceratiinae and (Amblyoponinae + Apomyrminae). Our phylogeny also highlights the non-monophyly of several ant genera, including Protanilla and Leptanilla in the Leptanillinae, Proceratium in the Proceratiinae, and Cryptopone, Euponera, and Mesoponera within the Ponerinae.",
keywords = "Diversified sampling, Fossilized birth-death process, Phylogenetics, Systematic bias, Systematics",
author = "Borowiec, {Marek L.} and Christian Rabeling and Brady, {Se{\'a}n G.} and Fisher, {Brian L.} and Schultz, {Ted R.} and Ward, {Philip S.}",
year = "2019",
month = "5",
day = "1",
doi = "10.1016/j.ympev.2019.01.024",
language = "English (US)",
volume = "134",
pages = "111--121",
journal = "Molecular Phylogenetics and Evolution",
issn = "1055-7903",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants

AU - Borowiec, Marek L.

AU - Rabeling, Christian

AU - Brady, Seán G.

AU - Fisher, Brian L.

AU - Schultz, Ted R.

AU - Ward, Philip S.

PY - 2019/5/1

Y1 - 2019/5/1

N2 - Knowledge of the internal phylogeny and evolutionary history of ants (Formicidae), the world's most species-rich clade of eusocial organisms, has dramatically improved since the advent of molecular phylogenetics. A number of relationships at the subfamily level, however, remain uncertain. Key unresolved issues include placement of the root of the ant tree of life and the relationships among the so-called poneroid subfamilies. Here we assemble a new data set to attempt a resolution of these two problems and carry out divergence dating, focusing on the age of the root node of crown Formicidae. For the phylogenetic analyses we included data from 110 ant species, including the key species Martialis heureka. We focused taxon sampling on non-formicoid lineages of ants to gain insight about deep nodes in the ant phylogeny. For divergence dating we retained a subset of 62 extant taxa and 42 fossils in order to approximate diversified sampling in the context of the fossilized birth-death process. We sequenced 11 nuclear gene fragments for a total of ∼7.5 kb and investigated the DNA sequence data for the presence of among-taxon compositional heterogeneity, a property known to mislead phylogenetic inference, and for its potential to affect the rooting of the ant phylogeny. We found sequences of the Leptanillinae and several outgroup taxa to be rich in adenine and thymine (51% average AT content) compared to the remaining ants (45% average). To investigate whether this heterogeneity could bias phylogenetic inference we performed outgroup removal experiments, analysis of compositionally homogeneous sites, and a simulation study. We found that compositional heterogeneity indeed appears to affect the placement of the root of the ant tree but has limited impact on more recent nodes. Our findings have implications for outgroup choice in phylogenetics, which should be made not only on the basis of close relationship to the ingroup, but should also take into account sequence divergence and other properties relative to the ingroup. We put forward a hypothesis regarding the rooting of the ant phylogeny, in which Martialis and the Leptanillinae together constitute a clade that is sister to all other ants. After correcting for compositional heterogeneity this emerges as the best-supported hypothesis of relationships at deep nodes in the ant tree. The results of our divergence dating under the fossilized birth-death process and diversified sampling suggest that the crown Formicidae originated during the Albian or Aptian ages of the Lower Cretaceous (103–124 Ma). In addition, we found support for monophyletic poneroids comprising the subfamilies Agroecomyrmecinae, Amblyoponinae, Apomyrminae, Paraponerinae, Ponerinae, and Proceratiinae, and well-supported relationships among these subfamilies except for the placement of Proceratiinae and (Amblyoponinae + Apomyrminae). Our phylogeny also highlights the non-monophyly of several ant genera, including Protanilla and Leptanilla in the Leptanillinae, Proceratium in the Proceratiinae, and Cryptopone, Euponera, and Mesoponera within the Ponerinae.

AB - Knowledge of the internal phylogeny and evolutionary history of ants (Formicidae), the world's most species-rich clade of eusocial organisms, has dramatically improved since the advent of molecular phylogenetics. A number of relationships at the subfamily level, however, remain uncertain. Key unresolved issues include placement of the root of the ant tree of life and the relationships among the so-called poneroid subfamilies. Here we assemble a new data set to attempt a resolution of these two problems and carry out divergence dating, focusing on the age of the root node of crown Formicidae. For the phylogenetic analyses we included data from 110 ant species, including the key species Martialis heureka. We focused taxon sampling on non-formicoid lineages of ants to gain insight about deep nodes in the ant phylogeny. For divergence dating we retained a subset of 62 extant taxa and 42 fossils in order to approximate diversified sampling in the context of the fossilized birth-death process. We sequenced 11 nuclear gene fragments for a total of ∼7.5 kb and investigated the DNA sequence data for the presence of among-taxon compositional heterogeneity, a property known to mislead phylogenetic inference, and for its potential to affect the rooting of the ant phylogeny. We found sequences of the Leptanillinae and several outgroup taxa to be rich in adenine and thymine (51% average AT content) compared to the remaining ants (45% average). To investigate whether this heterogeneity could bias phylogenetic inference we performed outgroup removal experiments, analysis of compositionally homogeneous sites, and a simulation study. We found that compositional heterogeneity indeed appears to affect the placement of the root of the ant tree but has limited impact on more recent nodes. Our findings have implications for outgroup choice in phylogenetics, which should be made not only on the basis of close relationship to the ingroup, but should also take into account sequence divergence and other properties relative to the ingroup. We put forward a hypothesis regarding the rooting of the ant phylogeny, in which Martialis and the Leptanillinae together constitute a clade that is sister to all other ants. After correcting for compositional heterogeneity this emerges as the best-supported hypothesis of relationships at deep nodes in the ant tree. The results of our divergence dating under the fossilized birth-death process and diversified sampling suggest that the crown Formicidae originated during the Albian or Aptian ages of the Lower Cretaceous (103–124 Ma). In addition, we found support for monophyletic poneroids comprising the subfamilies Agroecomyrmecinae, Amblyoponinae, Apomyrminae, Paraponerinae, Ponerinae, and Proceratiinae, and well-supported relationships among these subfamilies except for the placement of Proceratiinae and (Amblyoponinae + Apomyrminae). Our phylogeny also highlights the non-monophyly of several ant genera, including Protanilla and Leptanilla in the Leptanillinae, Proceratium in the Proceratiinae, and Cryptopone, Euponera, and Mesoponera within the Ponerinae.

KW - Diversified sampling

KW - Fossilized birth-death process

KW - Phylogenetics

KW - Systematic bias

KW - Systematics

UR - http://www.scopus.com/inward/record.url?scp=85061583672&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85061583672&partnerID=8YFLogxK

U2 - 10.1016/j.ympev.2019.01.024

DO - 10.1016/j.ympev.2019.01.024

M3 - Article

VL - 134

SP - 111

EP - 121

JO - Molecular Phylogenetics and Evolution

JF - Molecular Phylogenetics and Evolution

SN - 1055-7903

ER -