Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study

Rina D. Rudyanto, Sjoerd Kerkstra, Eva M. van Rikxoort, Catalin Fetita, Pierre Yves Brillet, Christophe Lefevre, Wenzhe Xue, Xiangjun Zhu, Jianming Liang, Ilkay Öksüz, Devrim Ünay, Kamuran Kadipaşaoğlu, Raúl San J osé Estépar, James C. Ross, George R. Washko, Juan Carlos Prieto, Marcela H ernández Hoyos, Maciej Orkisz, Hans Meine, Markus HüllebrandChristina Stöcker, Fernando L opez Mir, Valery Naranjo, Eliseo Villanueva, Marius Staring, Changyan Xiao, Berend C. Stoel, Anna Fabijanska, Erik Smistad, Anne C. Elster, Frank Lindseth, Amir H ossein Foruzan, Ryan Kiros, Karteek Popuri, Dana Cobzas, Daniel Jimenez-Carretero, Andres Santos, Maria J. Ledesma-Carbayo, Michael Helmberger, Martin Urschler, Michael Pienn, Dennis G H Bosboom, Arantza Campo, Mathias Prokop, Pim A. de Jong, Carlos Ortiz-de-Solorzano, Arrate Muñoz-Barrutia, Bram van Ginneken

    Research output: Contribution to journalArticle

    69 Citations (Scopus)

    Abstract

    The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.

    Original languageEnglish (US)
    Pages (from-to)1217-1232
    Number of pages16
    JournalMedical Image Analysis
    Volume18
    Issue number7
    DOIs
    StatePublished - Oct 1 2014

    Fingerprint

    Tomography
    Lung
    Imaging techniques
    Pulmonary diseases
    Automation
    Automatic Data Processing
    Lung Diseases
    Websites
    Industry
    Thorax
    Processing
    Datasets

    Keywords

    • Algorithm comparison
    • Challenge
    • Lung vessels
    • Segmentation
    • Thoracic computed tomography

    ASJC Scopus subject areas

    • Medicine(all)

    Cite this

    Rudyanto, R. D., Kerkstra, S., van Rikxoort, E. M., Fetita, C., Brillet, P. Y., Lefevre, C., ... van Ginneken, B. (2014). Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Medical Image Analysis, 18(7), 1217-1232. https://doi.org/10.1016/j.media.2014.07.003

    Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung : the VESSEL12 study. / Rudyanto, Rina D.; Kerkstra, Sjoerd; van Rikxoort, Eva M.; Fetita, Catalin; Brillet, Pierre Yves; Lefevre, Christophe; Xue, Wenzhe; Zhu, Xiangjun; Liang, Jianming; Öksüz, Ilkay; Ünay, Devrim; Kadipaşaoğlu, Kamuran; Estépar, Raúl San J osé; Ross, James C.; Washko, George R.; Prieto, Juan Carlos; Hoyos, Marcela H ernández; Orkisz, Maciej; Meine, Hans; Hüllebrand, Markus; Stöcker, Christina; Mir, Fernando L opez; Naranjo, Valery; Villanueva, Eliseo; Staring, Marius; Xiao, Changyan; Stoel, Berend C.; Fabijanska, Anna; Smistad, Erik; Elster, Anne C.; Lindseth, Frank; Foruzan, Amir H ossein; Kiros, Ryan; Popuri, Karteek; Cobzas, Dana; Jimenez-Carretero, Daniel; Santos, Andres; Ledesma-Carbayo, Maria J.; Helmberger, Michael; Urschler, Martin; Pienn, Michael; Bosboom, Dennis G H; Campo, Arantza; Prokop, Mathias; de Jong, Pim A.; Ortiz-de-Solorzano, Carlos; Muñoz-Barrutia, Arrate; van Ginneken, Bram.

    In: Medical Image Analysis, Vol. 18, No. 7, 01.10.2014, p. 1217-1232.

    Research output: Contribution to journalArticle

    Rudyanto, RD, Kerkstra, S, van Rikxoort, EM, Fetita, C, Brillet, PY, Lefevre, C, Xue, W, Zhu, X, Liang, J, Öksüz, I, Ünay, D, Kadipaşaoğlu, K, Estépar, RSJO, Ross, JC, Washko, GR, Prieto, JC, Hoyos, MHE, Orkisz, M, Meine, H, Hüllebrand, M, Stöcker, C, Mir, FLO, Naranjo, V, Villanueva, E, Staring, M, Xiao, C, Stoel, BC, Fabijanska, A, Smistad, E, Elster, AC, Lindseth, F, Foruzan, AHO, Kiros, R, Popuri, K, Cobzas, D, Jimenez-Carretero, D, Santos, A, Ledesma-Carbayo, MJ, Helmberger, M, Urschler, M, Pienn, M, Bosboom, DGH, Campo, A, Prokop, M, de Jong, PA, Ortiz-de-Solorzano, C, Muñoz-Barrutia, A & van Ginneken, B 2014, 'Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study', Medical Image Analysis, vol. 18, no. 7, pp. 1217-1232. https://doi.org/10.1016/j.media.2014.07.003
    Rudyanto, Rina D. ; Kerkstra, Sjoerd ; van Rikxoort, Eva M. ; Fetita, Catalin ; Brillet, Pierre Yves ; Lefevre, Christophe ; Xue, Wenzhe ; Zhu, Xiangjun ; Liang, Jianming ; Öksüz, Ilkay ; Ünay, Devrim ; Kadipaşaoğlu, Kamuran ; Estépar, Raúl San J osé ; Ross, James C. ; Washko, George R. ; Prieto, Juan Carlos ; Hoyos, Marcela H ernández ; Orkisz, Maciej ; Meine, Hans ; Hüllebrand, Markus ; Stöcker, Christina ; Mir, Fernando L opez ; Naranjo, Valery ; Villanueva, Eliseo ; Staring, Marius ; Xiao, Changyan ; Stoel, Berend C. ; Fabijanska, Anna ; Smistad, Erik ; Elster, Anne C. ; Lindseth, Frank ; Foruzan, Amir H ossein ; Kiros, Ryan ; Popuri, Karteek ; Cobzas, Dana ; Jimenez-Carretero, Daniel ; Santos, Andres ; Ledesma-Carbayo, Maria J. ; Helmberger, Michael ; Urschler, Martin ; Pienn, Michael ; Bosboom, Dennis G H ; Campo, Arantza ; Prokop, Mathias ; de Jong, Pim A. ; Ortiz-de-Solorzano, Carlos ; Muñoz-Barrutia, Arrate ; van Ginneken, Bram. / Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung : the VESSEL12 study. In: Medical Image Analysis. 2014 ; Vol. 18, No. 7. pp. 1217-1232.
    @article{4b059d70ac8440418385c445c80fd43e,
    title = "Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study",
    abstract = "The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.",
    keywords = "Algorithm comparison, Challenge, Lung vessels, Segmentation, Thoracic computed tomography",
    author = "Rudyanto, {Rina D.} and Sjoerd Kerkstra and {van Rikxoort}, {Eva M.} and Catalin Fetita and Brillet, {Pierre Yves} and Christophe Lefevre and Wenzhe Xue and Xiangjun Zhu and Jianming Liang and Ilkay {\"O}ks{\"u}z and Devrim {\"U}nay and Kamuran Kadipaşaoğlu and Est{\'e}par, {Ra{\'u}l San J os{\'e}} and Ross, {James C.} and Washko, {George R.} and Prieto, {Juan Carlos} and Hoyos, {Marcela H ern{\'a}ndez} and Maciej Orkisz and Hans Meine and Markus H{\"u}llebrand and Christina St{\"o}cker and Mir, {Fernando L opez} and Valery Naranjo and Eliseo Villanueva and Marius Staring and Changyan Xiao and Stoel, {Berend C.} and Anna Fabijanska and Erik Smistad and Elster, {Anne C.} and Frank Lindseth and Foruzan, {Amir H ossein} and Ryan Kiros and Karteek Popuri and Dana Cobzas and Daniel Jimenez-Carretero and Andres Santos and Ledesma-Carbayo, {Maria J.} and Michael Helmberger and Martin Urschler and Michael Pienn and Bosboom, {Dennis G H} and Arantza Campo and Mathias Prokop and {de Jong}, {Pim A.} and Carlos Ortiz-de-Solorzano and Arrate Mu{\~n}oz-Barrutia and {van Ginneken}, Bram",
    year = "2014",
    month = "10",
    day = "1",
    doi = "10.1016/j.media.2014.07.003",
    language = "English (US)",
    volume = "18",
    pages = "1217--1232",
    journal = "Medical Image Analysis",
    issn = "1361-8415",
    publisher = "Elsevier",
    number = "7",

    }

    TY - JOUR

    T1 - Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung

    T2 - the VESSEL12 study

    AU - Rudyanto, Rina D.

    AU - Kerkstra, Sjoerd

    AU - van Rikxoort, Eva M.

    AU - Fetita, Catalin

    AU - Brillet, Pierre Yves

    AU - Lefevre, Christophe

    AU - Xue, Wenzhe

    AU - Zhu, Xiangjun

    AU - Liang, Jianming

    AU - Öksüz, Ilkay

    AU - Ünay, Devrim

    AU - Kadipaşaoğlu, Kamuran

    AU - Estépar, Raúl San J osé

    AU - Ross, James C.

    AU - Washko, George R.

    AU - Prieto, Juan Carlos

    AU - Hoyos, Marcela H ernández

    AU - Orkisz, Maciej

    AU - Meine, Hans

    AU - Hüllebrand, Markus

    AU - Stöcker, Christina

    AU - Mir, Fernando L opez

    AU - Naranjo, Valery

    AU - Villanueva, Eliseo

    AU - Staring, Marius

    AU - Xiao, Changyan

    AU - Stoel, Berend C.

    AU - Fabijanska, Anna

    AU - Smistad, Erik

    AU - Elster, Anne C.

    AU - Lindseth, Frank

    AU - Foruzan, Amir H ossein

    AU - Kiros, Ryan

    AU - Popuri, Karteek

    AU - Cobzas, Dana

    AU - Jimenez-Carretero, Daniel

    AU - Santos, Andres

    AU - Ledesma-Carbayo, Maria J.

    AU - Helmberger, Michael

    AU - Urschler, Martin

    AU - Pienn, Michael

    AU - Bosboom, Dennis G H

    AU - Campo, Arantza

    AU - Prokop, Mathias

    AU - de Jong, Pim A.

    AU - Ortiz-de-Solorzano, Carlos

    AU - Muñoz-Barrutia, Arrate

    AU - van Ginneken, Bram

    PY - 2014/10/1

    Y1 - 2014/10/1

    N2 - The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.

    AB - The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.

    KW - Algorithm comparison

    KW - Challenge

    KW - Lung vessels

    KW - Segmentation

    KW - Thoracic computed tomography

    UR - http://www.scopus.com/inward/record.url?scp=84929133296&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84929133296&partnerID=8YFLogxK

    U2 - 10.1016/j.media.2014.07.003

    DO - 10.1016/j.media.2014.07.003

    M3 - Article

    C2 - 25113321

    AN - SCOPUS:84929133296

    VL - 18

    SP - 1217

    EP - 1232

    JO - Medical Image Analysis

    JF - Medical Image Analysis

    SN - 1361-8415

    IS - 7

    ER -