Compact modeling of conducting-bridge random-access memory (CBRAM)

Shimeng Yu, H. S.Philip Wong

Research output: Contribution to journalArticlepeer-review

212 Scopus citations

Abstract

A physics-based compact device model is developed for the conducting-bridge random-access memory (CBRAM). By considering the dependence of ion migration velocity on the electric field, the vertical and lateral growth/dissolution dynamics for the metallic filament are investigated. Both time-dependent transient and quasi-static switching characteristics of the CBRAM are captured. Moreover, the IV characteristics of the CBRAM can be reproduced. By further considering the compliance effect on the size of the metallic filament, the on-state resistance modulation is fitted, and the multilevel capability is included in the model. This model is verified by the experiments data from the Ag/Ge0.3Se0.7-based CBRAM cells. This model reveals that experimentally measured switching parameters such as the threshold voltage and the cell resistance are dynamic quantities that depend on the programming duration time. The time-dependent switching process of the CBRAM is quantified, thus paving the way for a compact SPICE model for circuit simulation.

Original languageEnglish (US)
Article number5740326
Pages (from-to)1352-1360
Number of pages9
JournalIEEE Transactions on Electron Devices
Volume58
Issue number5
DOIs
StatePublished - May 2011
Externally publishedYes

Keywords

  • compact model
  • conducting-bridge random-access memory (CBRAM)
  • programmable metallization cell (PMC)
  • resistive switching
  • solid-electrolyte memory
  • voltagetime relationship

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Compact modeling of conducting-bridge random-access memory (CBRAM)'. Together they form a unique fingerprint.

Cite this