CO adsorption in PdxCoyXz (X = Au, Mo, Ni) tertiary alloy nanocatalysts for PEM fuel cells-a theoretical analysis

Mauricio Garza Castañón, S. Velumani, Oxana Vasilievna Kharissova, Marco A. Jiménez, Arunachala Mada Kannan

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Application of tertiary alloy nanoparticles is becoming more important, however, the local structure of such alloyed particles, which is critical for tailoring their properties, is not yet very clearly understood. In this study, we present detailed theoretical analysis on the atomistic structure and CO adsorption in Pd70Co20X10 (X=Au, Mo, Ni) tertiary composite alloys for their application in fuel cells toward oxygen reduction reaction (ORR). Basic structure and the most stable configurations for all the three composites are determined. Quantum mechanical approaches and classic molecular dynamics methods are applied to model the structure and to determine the lowest energy configurations. Our theoretical results agree well with the experimental results of XRD patterns. Considering those structures as the base, simulations were performed to determine the magnitude of CO poisoning. The results obtained by ab-initio calculations allow us to estimate the CO-tolerance that these catalysts might have, along with those obtained for Pd-Co-Ni (70:20:10 atom %) tertiary alloy, and compared with commercial Pt (1 1 0) catalyst. From these results, a comparison has been made to show different CO adsorption strengths. This is the first step to fabricate an efficient engineering design that allows us to obtain high-performance, low-cost nanostructured catalysts.

Original languageEnglish (US)
Pages (from-to)594-600
Number of pages7
JournalInternational Journal of Energy Research
Volume35
Issue number7
DOIs
StatePublished - Jun 10 2011

Keywords

  • CO adsorption
  • Nanostructured catalysts
  • PEM fuel cells
  • Tertiary alloy

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'CO adsorption in PdxCoyXz (X = Au, Mo, Ni) tertiary alloy nanocatalysts for PEM fuel cells-a theoretical analysis'. Together they form a unique fingerprint.

Cite this