Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria

H. Xu, D. Vavilin, Willem Vermaas

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro, M. & Tanaka, A. (2001) J. Biol. Chem. 276, 4293-4297], chlorophyll b was made but accounted for less than 10% of total chlorophyll. However, when lhcb encoding light-harvesting complex (LHC)II from pea was present in the same strain (lhcb+/cao+), chlorophyll b accumulated in the cell to levels exceeding those of chlorophyll a, although LHCII did not accumulate. In the lhcb+/cao+ strain, the total amount of chlorophyll, the number of chlorophylls per photosystem II center, and the oxygen-evolving activity on a perchlorophyll basis were similar to those in the photosystem I-less strain. Furthermore, the chlorophyll a/b ratio of photosystem II core particles (retaining CP47 and CP43) and of whole cells of the lhcb+/cao+ strain was essentially identical, and PS II activity could be obtained efficiently by chlorophyll b excitation. These data indicate that chlorophyll b functionally substitutes for chlorophyll a in photosystem II. Therefore, the availability of chlorophylls, rather than their binding specificity, may determine which chlorophyll is incorporated at many positions of photosystem II. We propose that the transient presence of a LHCII/chlorophyll(ide) a oxygenase complex in the lhcb+/cao+ strain leads to a high abundance of available chlorophyll b that is subsequently incorporated into photosystem II complexes. The apparent LHCII requirement for high chlorophyll(ide) a oxygenase activity may be instrumental to limit the occurrence of chlorophyll b in plants to LHC proteins.

Original languageEnglish (US)
Pages (from-to)14168-14173
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume98
Issue number24
DOIs
StatePublished - Nov 20 2001

Fingerprint

Photosystem II Protein Complex
Cyanobacteria
Chlorophyll
Photosystem I Protein Complex
Light-Harvesting Protein Complexes
Synechocystis
chlorophyll b
Peas
Arabidopsis
Oxygen
Light
chlorophyll a

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{2175819d13e645759358141d3f7e20d9,
title = "Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria",
abstract = "An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro, M. & Tanaka, A. (2001) J. Biol. Chem. 276, 4293-4297], chlorophyll b was made but accounted for less than 10{\%} of total chlorophyll. However, when lhcb encoding light-harvesting complex (LHC)II from pea was present in the same strain (lhcb+/cao+), chlorophyll b accumulated in the cell to levels exceeding those of chlorophyll a, although LHCII did not accumulate. In the lhcb+/cao+ strain, the total amount of chlorophyll, the number of chlorophylls per photosystem II center, and the oxygen-evolving activity on a perchlorophyll basis were similar to those in the photosystem I-less strain. Furthermore, the chlorophyll a/b ratio of photosystem II core particles (retaining CP47 and CP43) and of whole cells of the lhcb+/cao+ strain was essentially identical, and PS II activity could be obtained efficiently by chlorophyll b excitation. These data indicate that chlorophyll b functionally substitutes for chlorophyll a in photosystem II. Therefore, the availability of chlorophylls, rather than their binding specificity, may determine which chlorophyll is incorporated at many positions of photosystem II. We propose that the transient presence of a LHCII/chlorophyll(ide) a oxygenase complex in the lhcb+/cao+ strain leads to a high abundance of available chlorophyll b that is subsequently incorporated into photosystem II complexes. The apparent LHCII requirement for high chlorophyll(ide) a oxygenase activity may be instrumental to limit the occurrence of chlorophyll b in plants to LHC proteins.",
author = "H. Xu and D. Vavilin and Willem Vermaas",
year = "2001",
month = "11",
day = "20",
doi = "10.1073/pnas.251530298",
language = "English (US)",
volume = "98",
pages = "14168--14173",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "24",

}

TY - JOUR

T1 - Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria

AU - Xu, H.

AU - Vavilin, D.

AU - Vermaas, Willem

PY - 2001/11/20

Y1 - 2001/11/20

N2 - An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro, M. & Tanaka, A. (2001) J. Biol. Chem. 276, 4293-4297], chlorophyll b was made but accounted for less than 10% of total chlorophyll. However, when lhcb encoding light-harvesting complex (LHC)II from pea was present in the same strain (lhcb+/cao+), chlorophyll b accumulated in the cell to levels exceeding those of chlorophyll a, although LHCII did not accumulate. In the lhcb+/cao+ strain, the total amount of chlorophyll, the number of chlorophylls per photosystem II center, and the oxygen-evolving activity on a perchlorophyll basis were similar to those in the photosystem I-less strain. Furthermore, the chlorophyll a/b ratio of photosystem II core particles (retaining CP47 and CP43) and of whole cells of the lhcb+/cao+ strain was essentially identical, and PS II activity could be obtained efficiently by chlorophyll b excitation. These data indicate that chlorophyll b functionally substitutes for chlorophyll a in photosystem II. Therefore, the availability of chlorophylls, rather than their binding specificity, may determine which chlorophyll is incorporated at many positions of photosystem II. We propose that the transient presence of a LHCII/chlorophyll(ide) a oxygenase complex in the lhcb+/cao+ strain leads to a high abundance of available chlorophyll b that is subsequently incorporated into photosystem II complexes. The apparent LHCII requirement for high chlorophyll(ide) a oxygenase activity may be instrumental to limit the occurrence of chlorophyll b in plants to LHC proteins.

AB - An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro, M. & Tanaka, A. (2001) J. Biol. Chem. 276, 4293-4297], chlorophyll b was made but accounted for less than 10% of total chlorophyll. However, when lhcb encoding light-harvesting complex (LHC)II from pea was present in the same strain (lhcb+/cao+), chlorophyll b accumulated in the cell to levels exceeding those of chlorophyll a, although LHCII did not accumulate. In the lhcb+/cao+ strain, the total amount of chlorophyll, the number of chlorophylls per photosystem II center, and the oxygen-evolving activity on a perchlorophyll basis were similar to those in the photosystem I-less strain. Furthermore, the chlorophyll a/b ratio of photosystem II core particles (retaining CP47 and CP43) and of whole cells of the lhcb+/cao+ strain was essentially identical, and PS II activity could be obtained efficiently by chlorophyll b excitation. These data indicate that chlorophyll b functionally substitutes for chlorophyll a in photosystem II. Therefore, the availability of chlorophylls, rather than their binding specificity, may determine which chlorophyll is incorporated at many positions of photosystem II. We propose that the transient presence of a LHCII/chlorophyll(ide) a oxygenase complex in the lhcb+/cao+ strain leads to a high abundance of available chlorophyll b that is subsequently incorporated into photosystem II complexes. The apparent LHCII requirement for high chlorophyll(ide) a oxygenase activity may be instrumental to limit the occurrence of chlorophyll b in plants to LHC proteins.

UR - http://www.scopus.com/inward/record.url?scp=0035923691&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035923691&partnerID=8YFLogxK

U2 - 10.1073/pnas.251530298

DO - 10.1073/pnas.251530298

M3 - Article

VL - 98

SP - 14168

EP - 14173

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 24

ER -