Abstract

The effects of access region scaling on the performance of millimeter-wave GaN HEMTs is investigated through nanoscale carrier dynamics description obtained by full band Cellular Monte Carlo simulation. The drain current and transconductance have shown to increase monotonically up to respectively 5500 mA/mm and 1500 mS/mm by symmetrically scaling the source to gate and gate to drain distance from 635 nm to 50 nm. The electric field distribution has been studied for the shorter access regions and it was seen to be still far from the GaN breakdown limit. The access region scaling is found to greatly improve the frequency response of the device as well: from 340 GHz up to 860 GHz. Detailed simulation of the carrier dynamics in the area under the gate showed that these improvements are due to higher transit velocity of electrons at the source end of the gate.

Original languageEnglish (US)
Title of host publication2012 15th International Workshop on Computational Electronics, IWCE 2012
DOIs
StatePublished - 2012
Event2012 15th International Workshop on Computational Electronics, IWCE 2012 - Madison, WI, United States
Duration: May 22 2012May 25 2012

Publication series

Name2012 15th International Workshop on Computational Electronics, IWCE 2012

Other

Other2012 15th International Workshop on Computational Electronics, IWCE 2012
Country/TerritoryUnited States
CityMadison, WI
Period5/22/125/25/12

Keywords

  • GaN
  • HEMT
  • High Frequency
  • Monte Carlo
  • Numerical Simulation
  • Scaling
  • Transit Velocity
  • Ultimate Frequency

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Cellular Monte Carlo study lateral scaling impact of on the DC-RF performance of high-power GaN HEMTs'. Together they form a unique fingerprint.

Cite this