CARBON-RICH PRESOLAR GRAINS from MASSIVE STARS: SUBSOLAR 12C/13C and 14N/15N RATIOS and the MYSTERY of 15N

M. Pignatari, E. Zinner, P. Hoppe, C. J. Jordan, B. K. Gibson, R. Trappitsch, F. Herwig, C. Fryer, R. Hirschi, Francis Timmes

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

Original languageEnglish (US)
Article numberL43
JournalAstrophysical Journal Letters
Volume808
Issue number2
DOIs
StatePublished - Aug 1 2015

Keywords

  • nuclear reactions, nucleosynthesis, abundances
  • stars: abundances
  • stars: evolution
  • stars: interiors
  • supernovae: general

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'CARBON-RICH PRESOLAR GRAINS from MASSIVE STARS: SUBSOLAR 12C/13C and 14N/15N RATIOS and the MYSTERY of 15N'. Together they form a unique fingerprint.

Cite this