Boosting CO2-To-CO conversion on a robust single-Atom copper decorated carbon catalyst by enhancing intermediate binding strength

Shixia Chen, Yuewei Li, Zhuogang Bu, Fangqi Yang, Junhui Luo, Qizheng An, Zheling Zeng, Jun Wang, Shuguang Deng

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The ability to manipulate the binding strengths of intermediates on a catalyst is extremely challenging but essential for active and selective CO2 electroreduction (CO2RR). Single-Atom copper anchored on a nitrogenated carbon (Cu-N-C) structure is still rarely unexplored for efficient CO production. Herein, we demonstrate a plausible hydrogen-bonding promoted strategy that significantly enhances the ∗COOH adsorption and facilitates the ∗CO desorption on a Cu-N-C catalyst. The as-prepared Cu-N-C catalyst with Cu-N3 coordination achieves a high CO faradaic efficiency (FE) of 98% at-0.67 V (vs. reversible hydrogen electrode) as well as superior stability (FE remains above 90% over 20 h). Notably, in a three-phase flow cell configuration, a remarkable CO2 to CO FE of 99% at-0.67 V accompanying a large CO partial current density of 131.1 mA cm-2 at-1.17 V was observed. Density functional theory calculations reveal that the Cu-N3 coordination is potentially stabilized by an extended carbon plane with six nitrogen vacancies, while three unoccupied N sites are spontaneously saturated by protons during the CO2RR. Therefore, the hydrogen bonds formed between the adsorbed ∗COOH and adjacent protons significantly reduce the energy barrier of ∗COOH formation. After the first proton-coupled electron transfer process, the adsorbed ∗CO species are easily released to boost the CO production.

Original languageEnglish (US)
Pages (from-to)1705-1712
Number of pages8
JournalJournal of Materials Chemistry A
Volume9
Issue number3
DOIs
StatePublished - Jan 21 2021

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Boosting CO<sub>2</sub>-To-CO conversion on a robust single-Atom copper decorated carbon catalyst by enhancing intermediate binding strength'. Together they form a unique fingerprint.

Cite this