TY - JOUR
T1 - Biodiversity and disease risk in an algal biofuel system
T2 - An experimental test in outdoor ponds using a before-after-control-impact (BACI) design
AU - Widin, Spenser L.
AU - Billings, Kia M.
AU - McGowen, John
AU - Cardinale, Bradley J.
N1 - Funding Information:
BJC: U.S. Department of Energy Biotechnology Office Grant (DE-EE0008482) https://www.energy.gov/eere/bioenergy/bioenergytechnologies-office The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
Copyright: © 2022 Widin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/4
Y1 - 2022/4
N2 - For outdoor cultivation of algal feedstocks to become a commercially viable and sustainable option for biofuel production, algal cultivation must maintain high yields and temporal stability in environmentally variable outdoor ponds. One of the main challenges is mitigating disease outbreaks that leads to culture crashes. Drawing on predictions from the ‘dilution effect’ hypothesis, in which increased biodiversity is thought to reduce disease risk in a community, a teste of whether algal polycultures would reduce disease risk and improve feedstock production efficiencies compared to monocultures was performed. While the positive benefits of biodiversity on disease risk have been demonstrated in various systems, to the best of our knowledge this is the first test in an algal biofuel system. Here, the results a before-after-control-impact (BACI) experimental design to compare mean monoculture (control) and polyculture (impact) yield, stability, and productivity before and after fungal infection when grown in 400-L outdoor raceway ponds are presented. It has been found that polycultures did not experience a reduction in disease risk compared to monocultures or differ in production efficiencies throughout the course of the 43-day experiment. These results show that polyculture feedstocks can maintain similar levels of productivity, stability, and disease resistance to that of a monoculture. Determining whether these results are generalizable or represent one case study requires additional outdoor experiments using a larger variety of host and pathogen species.
AB - For outdoor cultivation of algal feedstocks to become a commercially viable and sustainable option for biofuel production, algal cultivation must maintain high yields and temporal stability in environmentally variable outdoor ponds. One of the main challenges is mitigating disease outbreaks that leads to culture crashes. Drawing on predictions from the ‘dilution effect’ hypothesis, in which increased biodiversity is thought to reduce disease risk in a community, a teste of whether algal polycultures would reduce disease risk and improve feedstock production efficiencies compared to monocultures was performed. While the positive benefits of biodiversity on disease risk have been demonstrated in various systems, to the best of our knowledge this is the first test in an algal biofuel system. Here, the results a before-after-control-impact (BACI) experimental design to compare mean monoculture (control) and polyculture (impact) yield, stability, and productivity before and after fungal infection when grown in 400-L outdoor raceway ponds are presented. It has been found that polycultures did not experience a reduction in disease risk compared to monocultures or differ in production efficiencies throughout the course of the 43-day experiment. These results show that polyculture feedstocks can maintain similar levels of productivity, stability, and disease resistance to that of a monoculture. Determining whether these results are generalizable or represent one case study requires additional outdoor experiments using a larger variety of host and pathogen species.
UR - http://www.scopus.com/inward/record.url?scp=85129259183&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85129259183&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0267674
DO - 10.1371/journal.pone.0267674
M3 - Article
C2 - 35482813
AN - SCOPUS:85129259183
SN - 1932-6203
VL - 17
JO - PLoS One
JF - PLoS One
IS - 4 April
M1 - e0267674
ER -