Automation and yield of micron-scale self-assembly processes

Ehsan Saeedi, Samuel S. Kim, James R. Etzkorn, Deirdre Meldrum, Babak A. Parviz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

We present the use of self-assembly to integrate a large number of free-standing microcomponents onto unconventional substrates. The microcomponents are batch fabricated separately from different semiconductor materials in potentially incompatible microfabrication processes and integrated onto unconventional substrates such as glass and plastic. These substrates offer a number of unique attributes as compared with silicon such as transparency, flexibility, and lower cost. Here, we provide an overview of the self-assembly process, describe how microcomponents that can participate in the self-assembly process can be mass-produced, and discuss initial self-assembly experimental results. Our results indicate that even with a very simple set-up, self-assembly yields as high as 97% for components as small as 100 μm are achievable, making the self-assembly technique immediately comparable with (or better than) the state-of-the-art robotic pick-and-place systems. We discuss various parameters that affect the yield of the self-assembly process and a possible automation scheme.

Original languageEnglish (US)
Title of host publicationProceedings of the 3rd IEEE International Conference on Automation Science and Engineering, IEEE CASE 2007
Pages375-380
Number of pages6
DOIs
StatePublished - Dec 1 2007
Event3rd IEEE International Conference on Automation Science and Engineering, IEEE CASE 2007 - Scottsdale, AZ, United States
Duration: Sep 22 2007Sep 25 2007

Publication series

NameProceedings of the 3rd IEEE International Conference on Automation Science and Engineering, IEEE CASE 2007

Other

Other3rd IEEE International Conference on Automation Science and Engineering, IEEE CASE 2007
Country/TerritoryUnited States
CityScottsdale, AZ
Period9/22/079/25/07

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Automation and yield of micron-scale self-assembly processes'. Together they form a unique fingerprint.

Cite this