Abstract

The problems of antibiotic overuse compel us to seek alternative antibacterial agents. Some clays have been shown to kill antibiotic-resistant human pathogens and may provide an alternative to known antibiotics. Here we show that Al toxicity plays a central role in the antibacterial action of a kaolin-rich clay from the Colombian Amazon (AMZ). Antibacterial susceptibility testing shows minimum inhibitory concentrations of 80 mg/mL against a model Escherichia coli (ATCC 25922). The clay buffered the media pH to ∼4.6 and Eh values to +360 mV. Chemical analysis of AMZ and bacteria showed that Al, P, and transition metals (Fe, Cu, Mn, and Zn) were exchanged during incubation at 37 °C. Only Al derived from the clay exceeded the minimum inhibitory concentrations for E. coli under acidic conditions. Ion imaging showed elevated Al levels in the bacterial membrane, and high intracellular Fe levels, relative to those of untreated controls. Phosphorus depletion in E. coli after reaction with AMZ, together with evidence of membrane permeabilization, suggests that Al reacts with membrane phospholipids, enhancing intracellular transport of metals. These results highlight the importance of dissolved Al for amplifying the toxicity of transition metals to human pathogens.

Original languageEnglish (US)
Pages (from-to)2401-2408
Number of pages8
JournalEnvironmental Science and Technology
Volume51
Issue number4
DOIs
StatePublished - Feb 21 2017

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Fingerprint Dive into the research topics of 'Antibacterial Activity of Aluminum in Clay from the Colombian Amazon'. Together they form a unique fingerprint.

  • Cite this