Altered phosphorylation of growth-associated protein B50/GAP-43 in Alzheimer disease with high neurofibrillary tangle density

M. R. Martzen, A. Nagy, Paul Coleman, H. Zwiers

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

The growth-associated phosphoprotein B50/GAP-43, associated with axonal proliferation and regeneration, was isolated from superior temporal gyrus (area 22) of seven control and eight Alzheimer disease (AD) postmortem human brains. Membrane and cytoplasmic proteins were fractionated and B50/GAP-43 was isolated by reverse-phase HPLC and gel electrophoresis. B50/GAP-43 was identified with rabbit polyclonal antibodies 4P3 (generated against the calmodulin binding domain of B50/GAP-43) and 1B5 (generated against whole bovine B50/GAP-43). B50/GAP-43 protein was further separated into phosphorylated and dephosphorylated species by calmodulin-Sepharose chromatography. The amounts of phosphorylated and dephosphorylated B50/GAP- 43 forms were determined by electrophoresis, protein staining, and densitometry. Data on the relative phosphorylation of B50/GAP-43 protein in membrane and cytoplasmic fractions show a 10-fold difference in the ratio of cytoplasmic/membrane phosphorylation of B50/GAP-43 in AD brains with high neurofibrillary tangle (NFT) density compared to AD brains with low NFT density. This difference is due to a decreased percentage of phosphorylated B50/GAP-43 in the membrane fraction relative to that in the cytosolic fraction from high NFT density. No analogous relationship was found between the phosphorylation of B50/GAP-43 and the density of neuritic plaques in the brains examined. These data indicate differential distribution of phosphorylated and dephosphorylated B50/GAP-43 in normal and AD brains is related to NFT density but not to neuritic plaque density.

Original languageEnglish (US)
Pages (from-to)11187-11191
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume90
Issue number23
DOIs
StatePublished - Dec 13 1993
Externally publishedYes

Fingerprint

GAP-43 Protein
Neurofibrillary Tangles
Alzheimer Disease
Phosphorylation
Growth
Brain
Amyloid Plaques
Calmodulin
Electrophoresis
Cell Membrane
Agarose Chromatography
Densitometry
Phosphoproteins
Temporal Lobe
Regeneration
Membrane Proteins

ASJC Scopus subject areas

  • General

Cite this

@article{e692e2992e6b4e9482f796335dd46e57,
title = "Altered phosphorylation of growth-associated protein B50/GAP-43 in Alzheimer disease with high neurofibrillary tangle density",
abstract = "The growth-associated phosphoprotein B50/GAP-43, associated with axonal proliferation and regeneration, was isolated from superior temporal gyrus (area 22) of seven control and eight Alzheimer disease (AD) postmortem human brains. Membrane and cytoplasmic proteins were fractionated and B50/GAP-43 was isolated by reverse-phase HPLC and gel electrophoresis. B50/GAP-43 was identified with rabbit polyclonal antibodies 4P3 (generated against the calmodulin binding domain of B50/GAP-43) and 1B5 (generated against whole bovine B50/GAP-43). B50/GAP-43 protein was further separated into phosphorylated and dephosphorylated species by calmodulin-Sepharose chromatography. The amounts of phosphorylated and dephosphorylated B50/GAP- 43 forms were determined by electrophoresis, protein staining, and densitometry. Data on the relative phosphorylation of B50/GAP-43 protein in membrane and cytoplasmic fractions show a 10-fold difference in the ratio of cytoplasmic/membrane phosphorylation of B50/GAP-43 in AD brains with high neurofibrillary tangle (NFT) density compared to AD brains with low NFT density. This difference is due to a decreased percentage of phosphorylated B50/GAP-43 in the membrane fraction relative to that in the cytosolic fraction from high NFT density. No analogous relationship was found between the phosphorylation of B50/GAP-43 and the density of neuritic plaques in the brains examined. These data indicate differential distribution of phosphorylated and dephosphorylated B50/GAP-43 in normal and AD brains is related to NFT density but not to neuritic plaque density.",
author = "Martzen, {M. R.} and A. Nagy and Paul Coleman and H. Zwiers",
year = "1993",
month = "12",
day = "13",
doi = "10.1073/pnas.90.23.11187",
language = "English (US)",
volume = "90",
pages = "11187--11191",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "23",

}

TY - JOUR

T1 - Altered phosphorylation of growth-associated protein B50/GAP-43 in Alzheimer disease with high neurofibrillary tangle density

AU - Martzen, M. R.

AU - Nagy, A.

AU - Coleman, Paul

AU - Zwiers, H.

PY - 1993/12/13

Y1 - 1993/12/13

N2 - The growth-associated phosphoprotein B50/GAP-43, associated with axonal proliferation and regeneration, was isolated from superior temporal gyrus (area 22) of seven control and eight Alzheimer disease (AD) postmortem human brains. Membrane and cytoplasmic proteins were fractionated and B50/GAP-43 was isolated by reverse-phase HPLC and gel electrophoresis. B50/GAP-43 was identified with rabbit polyclonal antibodies 4P3 (generated against the calmodulin binding domain of B50/GAP-43) and 1B5 (generated against whole bovine B50/GAP-43). B50/GAP-43 protein was further separated into phosphorylated and dephosphorylated species by calmodulin-Sepharose chromatography. The amounts of phosphorylated and dephosphorylated B50/GAP- 43 forms were determined by electrophoresis, protein staining, and densitometry. Data on the relative phosphorylation of B50/GAP-43 protein in membrane and cytoplasmic fractions show a 10-fold difference in the ratio of cytoplasmic/membrane phosphorylation of B50/GAP-43 in AD brains with high neurofibrillary tangle (NFT) density compared to AD brains with low NFT density. This difference is due to a decreased percentage of phosphorylated B50/GAP-43 in the membrane fraction relative to that in the cytosolic fraction from high NFT density. No analogous relationship was found between the phosphorylation of B50/GAP-43 and the density of neuritic plaques in the brains examined. These data indicate differential distribution of phosphorylated and dephosphorylated B50/GAP-43 in normal and AD brains is related to NFT density but not to neuritic plaque density.

AB - The growth-associated phosphoprotein B50/GAP-43, associated with axonal proliferation and regeneration, was isolated from superior temporal gyrus (area 22) of seven control and eight Alzheimer disease (AD) postmortem human brains. Membrane and cytoplasmic proteins were fractionated and B50/GAP-43 was isolated by reverse-phase HPLC and gel electrophoresis. B50/GAP-43 was identified with rabbit polyclonal antibodies 4P3 (generated against the calmodulin binding domain of B50/GAP-43) and 1B5 (generated against whole bovine B50/GAP-43). B50/GAP-43 protein was further separated into phosphorylated and dephosphorylated species by calmodulin-Sepharose chromatography. The amounts of phosphorylated and dephosphorylated B50/GAP- 43 forms were determined by electrophoresis, protein staining, and densitometry. Data on the relative phosphorylation of B50/GAP-43 protein in membrane and cytoplasmic fractions show a 10-fold difference in the ratio of cytoplasmic/membrane phosphorylation of B50/GAP-43 in AD brains with high neurofibrillary tangle (NFT) density compared to AD brains with low NFT density. This difference is due to a decreased percentage of phosphorylated B50/GAP-43 in the membrane fraction relative to that in the cytosolic fraction from high NFT density. No analogous relationship was found between the phosphorylation of B50/GAP-43 and the density of neuritic plaques in the brains examined. These data indicate differential distribution of phosphorylated and dephosphorylated B50/GAP-43 in normal and AD brains is related to NFT density but not to neuritic plaque density.

UR - http://www.scopus.com/inward/record.url?scp=0027488102&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027488102&partnerID=8YFLogxK

U2 - 10.1073/pnas.90.23.11187

DO - 10.1073/pnas.90.23.11187

M3 - Article

VL - 90

SP - 11187

EP - 11191

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 23

ER -