All silicon tandem solar cell

Alex Killam, Tim Reblitz, Andre Augusto, Stuart Bowden

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Crystalline silicon is consistently the dominant material for commercial photovoltaic devices. Exploiting the direct and indirect bandgap of silicon results in a silicon-silicon tandem solar cells with possible efficiency benefits over standard single-junction silicon solar cells. Epitaxial growth offers a way to make such cells and the resulting devices have higher voltage and lower currents leading to much lower module losses. All silicon tandem devices were modeled in PC1D using precise solar spectrums generated with SMARTS. The optimal layer thicknesses found when the input spectrum is AM1.5G for a silicon-silicon device are: 3.3 μm for the top absorber and 172 μm for the bottom absorber. The modeled device produces an efficiency of 21.3%, a 1.1% relative increase over a model for a commercial silicon cell.

Original languageEnglish (US)
Title of host publication2016 IEEE 43rd Photovoltaic Specialists Conference, PVSC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2448-2450
Number of pages3
Volume2016-November
ISBN (Electronic)9781509027248
DOIs
StatePublished - Nov 18 2016
Event43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States
Duration: Jun 5 2016Jun 10 2016

Other

Other43rd IEEE Photovoltaic Specialists Conference, PVSC 2016
Country/TerritoryUnited States
CityPortland
Period6/5/166/10/16

Keywords

  • PC1D
  • photovoltaic cell
  • silicon
  • SMARTS
  • solar cell
  • tandem

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'All silicon tandem solar cell'. Together they form a unique fingerprint.

Cite this