A thermal emission spectral library of rock-forming minerals

Philip Christensen, Joshua L. Bandfield, Victoria E. Hamilton, Douglas A. Howard, Melissa D. Lane, Jennifer L. Piatek, Steven Ruff, William L. Stefanov

Research output: Contribution to journalArticlepeer-review

330 Scopus citations

Abstract

A library of thermal infrared spectra of silicate, carbonate, sulfate, phosphate, halide, and oxide minerals has been prepared for comparison to spectra obtained from planetary and Earth-orbiting spacecraft, airborne instruments, and laboratory measurements. The emphasis in developing this library has been to obtain pure samples of specific minerals. All samples were hand processed and analyzed for composition and purity. The majority are 710-1000 μm particle size fractions, chosen to minimize particle size effects. Spectral acquisition follows a method described previously, and emissivity is determined to within 2% in most cases. Each mineral spectrum is accompanied by descriptive information in database form including compositional information, sample quality, and a comments field to describe special circumstances and unique conditions. More than 150 samples were selected to include the common rock-forming minerals with an emphasis on igneous and sedimentary minerals. This library is available in digital form and will be expanded as new, well-characterized samples are acquired.

Original languageEnglish (US)
Article number1998JE000624
Pages (from-to)9735-9739
Number of pages5
JournalJournal of Geophysical Research: Planets
Volume105
Issue numberE4
DOIs
StatePublished - Apr 25 2000

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Atmospheric Science
  • Astronomy and Astrophysics
  • Oceanography

Fingerprint

Dive into the research topics of 'A thermal emission spectral library of rock-forming minerals'. Together they form a unique fingerprint.

Cite this