A tetrahedron-based heat flux signature for cortical thickness morphometry analysis

Yonghui Fan, Gang Wang, Natasha Lepore, Yalin Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Cortical thickness analysis of brain magnetic resonance images is an important technique in neuroimaging research. There are two main computational paradigms, namely voxel-based and surface-based methods. Recently, a tetrahedron-based volumetric morphometry (TBVM) approach involving proper discretization methods was proposed. The multi-scale and physics-based geometric features generated through such methods may yield stronger statistical power. However, several challenges, such as the lack of well-defined thickness statistics and the difficulty in filling tetrahedrons into the thin and curvy cortex structure, impede the broad application of TBVM. In this paper, we present a universal cortical thickness morphometry analysis approach called tetrahedron-based Heat Flux Signature (tHFS) to address these challenges. We define the tetrahedron-based weak form heat equation and Laplace-Beltrami eigen decomposition and give an explicit FEM-based discretization formulation to compute the tHFS. We further show a tHFS metric space with which cortical morphometric distances can be directly visualized. Additionally, we optimize the cortical tetrahedral mesh generation pipeline and fill dense high-quality tetrahedra in the grey matters without sacrificing data integrity. Compared with existing cortical thickness analysis approaches, our experimental results of distinguishing among Alzheimer’s disease (AD), cognitively normal (CN) and mild cognitive impairment (MCI) subjects shows that tHFS yields a more accurate representation of cortical thickness morphometry. The tHFS metric experiment provides a more vivid visualization of tHFS’s power in separating different clinical groups.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Christos Davatzikos, Gabor Fichtinger, Carlos Alberola-López, Julia A. Schnabel
PublisherSpringer Verlag
Pages420-428
Number of pages9
ISBN (Print)9783030009304
DOIs
StatePublished - Jan 1 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: Sep 16 2018Sep 20 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11072 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period9/16/189/20/18

Fingerprint

Morphometry
Triangular pyramid
Heat Flux
Heat flux
Signature
Neuroimaging
Mesh generation
Magnetic resonance
Brain
Visualization
Physics
Pipelines
Statistics
Decomposition
Finite element method
Data Integrity
Tetrahedral Mesh
Statistical Power
Magnetic Resonance Image
Alzheimer's Disease

Keywords

  • Cortical thickness
  • Tetrahedron-based morphometry

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Fan, Y., Wang, G., Lepore, N., & Wang, Y. (2018). A tetrahedron-based heat flux signature for cortical thickness morphometry analysis. In A. F. Frangi, C. Davatzikos, G. Fichtinger, C. Alberola-López, & J. A. Schnabel (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings (pp. 420-428). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11072 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-00931-1_48

A tetrahedron-based heat flux signature for cortical thickness morphometry analysis. / Fan, Yonghui; Wang, Gang; Lepore, Natasha; Wang, Yalin.

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. ed. / Alejandro F. Frangi; Christos Davatzikos; Gabor Fichtinger; Carlos Alberola-López; Julia A. Schnabel. Springer Verlag, 2018. p. 420-428 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11072 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Fan, Y, Wang, G, Lepore, N & Wang, Y 2018, A tetrahedron-based heat flux signature for cortical thickness morphometry analysis. in AF Frangi, C Davatzikos, G Fichtinger, C Alberola-López & JA Schnabel (eds), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11072 LNCS, Springer Verlag, pp. 420-428, 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018, Granada, Spain, 9/16/18. https://doi.org/10.1007/978-3-030-00931-1_48
Fan Y, Wang G, Lepore N, Wang Y. A tetrahedron-based heat flux signature for cortical thickness morphometry analysis. In Frangi AF, Davatzikos C, Fichtinger G, Alberola-López C, Schnabel JA, editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Springer Verlag. 2018. p. 420-428. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). https://doi.org/10.1007/978-3-030-00931-1_48
Fan, Yonghui ; Wang, Gang ; Lepore, Natasha ; Wang, Yalin. / A tetrahedron-based heat flux signature for cortical thickness morphometry analysis. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. editor / Alejandro F. Frangi ; Christos Davatzikos ; Gabor Fichtinger ; Carlos Alberola-López ; Julia A. Schnabel. Springer Verlag, 2018. pp. 420-428 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
@inproceedings{de42bcbc83a84cd88d1210a0c6f63d90,
title = "A tetrahedron-based heat flux signature for cortical thickness morphometry analysis",
abstract = "Cortical thickness analysis of brain magnetic resonance images is an important technique in neuroimaging research. There are two main computational paradigms, namely voxel-based and surface-based methods. Recently, a tetrahedron-based volumetric morphometry (TBVM) approach involving proper discretization methods was proposed. The multi-scale and physics-based geometric features generated through such methods may yield stronger statistical power. However, several challenges, such as the lack of well-defined thickness statistics and the difficulty in filling tetrahedrons into the thin and curvy cortex structure, impede the broad application of TBVM. In this paper, we present a universal cortical thickness morphometry analysis approach called tetrahedron-based Heat Flux Signature (tHFS) to address these challenges. We define the tetrahedron-based weak form heat equation and Laplace-Beltrami eigen decomposition and give an explicit FEM-based discretization formulation to compute the tHFS. We further show a tHFS metric space with which cortical morphometric distances can be directly visualized. Additionally, we optimize the cortical tetrahedral mesh generation pipeline and fill dense high-quality tetrahedra in the grey matters without sacrificing data integrity. Compared with existing cortical thickness analysis approaches, our experimental results of distinguishing among Alzheimer’s disease (AD), cognitively normal (CN) and mild cognitive impairment (MCI) subjects shows that tHFS yields a more accurate representation of cortical thickness morphometry. The tHFS metric experiment provides a more vivid visualization of tHFS’s power in separating different clinical groups.",
keywords = "Cortical thickness, Tetrahedron-based morphometry",
author = "Yonghui Fan and Gang Wang and Natasha Lepore and Yalin Wang",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-030-00931-1_48",
language = "English (US)",
isbn = "9783030009304",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "420--428",
editor = "Frangi, {Alejandro F.} and Christos Davatzikos and Gabor Fichtinger and Carlos Alberola-L{\'o}pez and Schnabel, {Julia A.}",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings",

}

TY - GEN

T1 - A tetrahedron-based heat flux signature for cortical thickness morphometry analysis

AU - Fan, Yonghui

AU - Wang, Gang

AU - Lepore, Natasha

AU - Wang, Yalin

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Cortical thickness analysis of brain magnetic resonance images is an important technique in neuroimaging research. There are two main computational paradigms, namely voxel-based and surface-based methods. Recently, a tetrahedron-based volumetric morphometry (TBVM) approach involving proper discretization methods was proposed. The multi-scale and physics-based geometric features generated through such methods may yield stronger statistical power. However, several challenges, such as the lack of well-defined thickness statistics and the difficulty in filling tetrahedrons into the thin and curvy cortex structure, impede the broad application of TBVM. In this paper, we present a universal cortical thickness morphometry analysis approach called tetrahedron-based Heat Flux Signature (tHFS) to address these challenges. We define the tetrahedron-based weak form heat equation and Laplace-Beltrami eigen decomposition and give an explicit FEM-based discretization formulation to compute the tHFS. We further show a tHFS metric space with which cortical morphometric distances can be directly visualized. Additionally, we optimize the cortical tetrahedral mesh generation pipeline and fill dense high-quality tetrahedra in the grey matters without sacrificing data integrity. Compared with existing cortical thickness analysis approaches, our experimental results of distinguishing among Alzheimer’s disease (AD), cognitively normal (CN) and mild cognitive impairment (MCI) subjects shows that tHFS yields a more accurate representation of cortical thickness morphometry. The tHFS metric experiment provides a more vivid visualization of tHFS’s power in separating different clinical groups.

AB - Cortical thickness analysis of brain magnetic resonance images is an important technique in neuroimaging research. There are two main computational paradigms, namely voxel-based and surface-based methods. Recently, a tetrahedron-based volumetric morphometry (TBVM) approach involving proper discretization methods was proposed. The multi-scale and physics-based geometric features generated through such methods may yield stronger statistical power. However, several challenges, such as the lack of well-defined thickness statistics and the difficulty in filling tetrahedrons into the thin and curvy cortex structure, impede the broad application of TBVM. In this paper, we present a universal cortical thickness morphometry analysis approach called tetrahedron-based Heat Flux Signature (tHFS) to address these challenges. We define the tetrahedron-based weak form heat equation and Laplace-Beltrami eigen decomposition and give an explicit FEM-based discretization formulation to compute the tHFS. We further show a tHFS metric space with which cortical morphometric distances can be directly visualized. Additionally, we optimize the cortical tetrahedral mesh generation pipeline and fill dense high-quality tetrahedra in the grey matters without sacrificing data integrity. Compared with existing cortical thickness analysis approaches, our experimental results of distinguishing among Alzheimer’s disease (AD), cognitively normal (CN) and mild cognitive impairment (MCI) subjects shows that tHFS yields a more accurate representation of cortical thickness morphometry. The tHFS metric experiment provides a more vivid visualization of tHFS’s power in separating different clinical groups.

KW - Cortical thickness

KW - Tetrahedron-based morphometry

UR - http://www.scopus.com/inward/record.url?scp=85053880476&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053880476&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-00931-1_48

DO - 10.1007/978-3-030-00931-1_48

M3 - Conference contribution

SN - 9783030009304

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 420

EP - 428

BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings

A2 - Frangi, Alejandro F.

A2 - Davatzikos, Christos

A2 - Fichtinger, Gabor

A2 - Alberola-López, Carlos

A2 - Schnabel, Julia A.

PB - Springer Verlag

ER -