A new method of proving theorems on chromatic index

A. Ehrenfeucht, V. Faber, Henry Kierstead

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

V.G. Vizing proved that the edge-chromatic number x1 of any multigraph M with maximum degree Δ(M) and maximum multiplicity μ(M) is Δ(M)+μ(M). In this paper we present a new method for proving this and other related results that are due to Gol'dberg, Anderson, Ore, Shannon, and Vizing. In our proofs we replace arguments about 'fan sequences' with counting arguments.

Original languageEnglish (US)
Pages (from-to)159-164
Number of pages6
JournalDiscrete Mathematics
Volume52
Issue number2-3
DOIs
StatePublished - 1984
Externally publishedYes

Fingerprint

Theorem proving
Chromatic Index
Theorem Proving
Ores
Fans
Multigraph
Chromatic number
Maximum Degree
Counting
Multiplicity
Fan

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

A new method of proving theorems on chromatic index. / Ehrenfeucht, A.; Faber, V.; Kierstead, Henry.

In: Discrete Mathematics, Vol. 52, No. 2-3, 1984, p. 159-164.

Research output: Contribution to journalArticle

Ehrenfeucht, A. ; Faber, V. ; Kierstead, Henry. / A new method of proving theorems on chromatic index. In: Discrete Mathematics. 1984 ; Vol. 52, No. 2-3. pp. 159-164.
@article{212192a3069c4857af213f5a0d162fc9,
title = "A new method of proving theorems on chromatic index",
abstract = "V.G. Vizing proved that the edge-chromatic number x1 of any multigraph M with maximum degree Δ(M) and maximum multiplicity μ(M) is Δ(M)+μ(M). In this paper we present a new method for proving this and other related results that are due to Gol'dberg, Anderson, Ore, Shannon, and Vizing. In our proofs we replace arguments about 'fan sequences' with counting arguments.",
author = "A. Ehrenfeucht and V. Faber and Henry Kierstead",
year = "1984",
doi = "10.1016/0012-365X(84)90078-5",
language = "English (US)",
volume = "52",
pages = "159--164",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "2-3",

}

TY - JOUR

T1 - A new method of proving theorems on chromatic index

AU - Ehrenfeucht, A.

AU - Faber, V.

AU - Kierstead, Henry

PY - 1984

Y1 - 1984

N2 - V.G. Vizing proved that the edge-chromatic number x1 of any multigraph M with maximum degree Δ(M) and maximum multiplicity μ(M) is Δ(M)+μ(M). In this paper we present a new method for proving this and other related results that are due to Gol'dberg, Anderson, Ore, Shannon, and Vizing. In our proofs we replace arguments about 'fan sequences' with counting arguments.

AB - V.G. Vizing proved that the edge-chromatic number x1 of any multigraph M with maximum degree Δ(M) and maximum multiplicity μ(M) is Δ(M)+μ(M). In this paper we present a new method for proving this and other related results that are due to Gol'dberg, Anderson, Ore, Shannon, and Vizing. In our proofs we replace arguments about 'fan sequences' with counting arguments.

UR - http://www.scopus.com/inward/record.url?scp=0039579480&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039579480&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(84)90078-5

DO - 10.1016/0012-365X(84)90078-5

M3 - Article

AN - SCOPUS:0039579480

VL - 52

SP - 159

EP - 164

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 2-3

ER -