Research Output per year

## Fingerprint Dive into the research topics where Brett Kotschwar is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

Ricci Flow
Mathematics

Ricci Soliton
Mathematics

Uniqueness
Mathematics

Curvature
Mathematics

Shrinking
Mathematics

Ricci Curvature
Mathematics

Curvature Flow
Mathematics

Gradient Estimate
Mathematics

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Research Output 2007 2017

- 162 Citations
- 7 h-Index
- 14 Article

## Kählerity of Shrinking Gradient Ricci Solitons Asymptotic to Kähler Cones

Kotschwar, B., Oct 4 2017, (Accepted/In press) In : Journal of Geometric Analysis. p. 1-15 15 p.Research output: Contribution to journal › Article

Ricci Soliton

Shrinking

Cone

Infinity

Gradient

## Short-time persistence of bounded curvature under the Ricci flow

Kotschwar, B., 2017, In : Mathematical Research Letters. 24, 2, p. 427-447 21 p.Research output: Contribution to journal › Article

Ricci Flow

Persistence

Curvature

Ricci Curvature

Weyl Tensor

4
Citations
(Scopus)

## A local curvature estimate for the Ricci flow

Kotschwar, B., Munteanu, O. & Wang, J., Nov 1 2016, In : Journal of Functional Analysis. 271, 9, p. 2604-2630 27 p.Research output: Contribution to journal › Article

Ricci Flow

Ricci Curvature

Blow-up

Curvature

Finite-time Singularities

4
Citations
(Scopus)

## A short proof of backward uniqueness for some geometric evolution equations

Kotschwar, B., 2016, (Accepted/In press) In : International Journal of Mathematics.Research output: Contribution to journal › Article

Curvature Flow

Evolution Equation

Uniqueness

Logarithmic Convexity

Carleman's Inequality

3
Citations
(Scopus)

## An Energy Approach to Uniqueness for Higher-Order Geometric Flows

Kotschwar, B., Dec 14 2015, (Accepted/In press) In : Journal of Geometric Analysis. p. 1-25 25 p.Research output: Contribution to journal › Article

Geometric Flows

Curvature Flow

Uniqueness

Higher Order

Energy

## Projects 2011 2020

Geometric Flows

Curvature Flow

Ricci Flow

Uniqueness

Unique Continuation

## Parabolic Differential Equations and the Geometry of Manifolds

National Science Foundation (NSF)

12/8/11 → 8/31/13

Project: Research project

Parabolic Differential Equations

Ricci Soliton

Mean Curvature Flow

Holonomy Group

Unique Continuation