We have studied the chalcopyrite compound ZnGeAs2 to access its potential as a novel photovoltaic material. Thin films of ZnGeAs2 have been produced by pulsed laser depositionThe films are deposited at 315 °C and are amorphous. They crystallize above 450 °C and improve in crystallinity up to and including 600 °C. At that temperature the Hall mobility is 55 ± 2 cm2√Vs , which is within uncertainty to the highest mobility ever reported for this material. We find a rather high carrier concentration, of order 1018 - 1019 for the annealed films, presumably due to the presence of Zn vacancies. The material is an effective light absorber, with an absorption coefficient of order 104 1/cm at 1.2 eV. These properties suggest ZnGeAs2 may be used to produce cost effective and efficient solar cells.

Original languageEnglish (US)
Title of host publication2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
Number of pages3
StatePublished - Dec 1 2009
Event2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009 - Philadelphia, PA, United States
Duration: Jun 7 2009Jun 12 2009

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
ISSN (Print)0160-8371


Other2009 34th IEEE Photovoltaic Specialists Conference, PVSC 2009
CountryUnited States
CityPhiladelphia, PA

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'ZnGeAs<sub>2</sub> thin films properties: A potentially useful semiconductor for photovoltaic applications'. Together they form a unique fingerprint.

Cite this