WSNet: Compact and efficient networks through weight sampling

Xiaojie Jin, Yingzhen Yang, Ning Xu, Jianchao Yang, Nebojsa Jojic, Jiashi Feng, Shuicheng Yan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We present a new approach and a novel architecture, termed WSNet, for learning compact and efficient deep neural networks. Existing approaches conventionally learn full model parameters independently and then compress them via ad hoc processing such as model pruning or filter factorization. Alternatively, WSNet proposes learning model parameters by sampling from a compact set of learnable parameters, which naturally enforces parameter sharing throughout the learning process. We demonstrate that such a novel weight sampling approach (and induced WSNet) promotes both weights and computation sharing favorably. By employing this method, we can more efficiently learn much smaller networks with competitive performance compared to baseline networks with equal numbers of convolution filters. Specifically, we consider learning compact and efficient 1D convolutional neural networks for audio classification. Extensive experiments on multiple audio classification datasets verify the effectiveness of WSNet. Combined with weight quantization, the resulted models are up to 180× smaller and theoretically up to 16× faster than the well-established baselines, without noticeable performance drop.

Original languageEnglish (US)
Title of host publication35th International Conference on Machine Learning, ICML 2018
EditorsJennifer Dy, Andreas Krause
PublisherInternational Machine Learning Society (IMLS)
Pages3683-3696
Number of pages14
ISBN (Electronic)9781510867963
StatePublished - 2018
Externally publishedYes
Event35th International Conference on Machine Learning, ICML 2018 - Stockholm, Sweden
Duration: Jul 10 2018Jul 15 2018

Publication series

Name35th International Conference on Machine Learning, ICML 2018
Volume5

Conference

Conference35th International Conference on Machine Learning, ICML 2018
Country/TerritorySweden
CityStockholm
Period7/10/187/15/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'WSNet: Compact and efficient networks through weight sampling'. Together they form a unique fingerprint.

Cite this