Winner-takes-all resource competition redirects cascading cell fate transitions

Rong Zhang, Hanah Goetz, Juan Melendez-Alvarez, Jiao Li, Tian Ding, Xiao Wang, Xiao Jun Tian

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Failure of modularity remains a significant challenge for assembling synthetic gene circuits with tested modules as they often do not function as expected. Competition over shared limited gene expression resources is a crucial underlying reason. It was reported that resource competition makes two seemingly separate genes connect in a graded linear manner. Here we unveil nonlinear resource competition within synthetic gene circuits. We first build a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain with two coupled self-activation modules to achieve two successive cell fate transitions. Interestingly, we find that the in vivo transition path was redirected as the activation of one switch always prevails against the other, contrary to the theoretically expected coactivation. This qualitatively different type of resource competition between the two modules follows a ‘winner-takes-all’ rule, where the winner is determined by the relative connection strength between the modules. To decouple the resource competition, we construct a two-strain circuit, which achieves successive activation and stable coactivation of the two switches. These results illustrate that a highly nonlinear hidden interaction between the circuit modules due to resource competition may cause counterintuitive consequences on circuit functions, which can be controlled with a division of labor strategy.

Original languageEnglish (US)
Article number853
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Winner-takes-all resource competition redirects cascading cell fate transitions'. Together they form a unique fingerprint.

Cite this