Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth?

Colin Gates, Gennady Ananyev, Shatabdi Roy-Chowdhury, Brendan Cullinane, Mathias Miller, Petra Fromme, G. Charles Dismukes

Research output: Contribution to journalArticlepeer-review

Abstract

All contemporary oxygenic phototrophs─from primitive cyanobacteria to complex multicellular plants─split water using a single invariant cluster comprising Mn4CaO5(the water oxidation catalyst) as the catalyst within photosystem II, the universal oxygenic reaction center of natural photosynthesis. This cluster is unstable outside of PSII and can be reconstituted, both in vivo and in vitro, using elemental aqueous ions and light, via photoassembly. Here, we demonstrate the first functional substitution of manganese in any oxygenic reaction center by in vitro photoassembly. Following complete removal of inorganic cofactors from cyanobacterial photosystem II microcrystal (PSIIX), photoassembly with free cobalt (Co2+), calcium (Ca2+), and water (OH-) restores O2evolution activity. Photoassembly occurs at least threefold faster using Co2+versus Mn2+due to a higher quantum yield for PSIIX-mediated charge separation (P*): Co2+→ P∗ → Co3+QA-. However, this kinetic preference for Co2+over native Mn2+during photoassembly is offset by significantly poorer catalytic activity (∼25% of the activity with Mn2+) and ∼3- to 30-fold faster photoinactivation rate. The resulting reconstituted Co-PSIIX oxidizes water by the standard four-flash photocycle, although they produce 4-fold less O2per PSII, suggested to arise from faster charge recombination (Co3+QA← Co4+QA-) in the catalytic cycle. The faster photoinactivation of reconstituted Co-PSIIX occurs under anaerobic conditions during the catalytic cycle, suggesting direct photodamage without the involvement of O2. Manganese offers two advantages for oxygenic phototrophs, which may explain its exclusive retention throughout Darwinian evolution: significantly slower charge recombination (Mn3+QA← Mn4+QA-) permits more water oxidation at low and fluctuating solar irradiation (greater net energy conversion) and much greater tolerance to photodamage at high light intensities (Mn4+is less oxidizing than Co4+). Future work to identify the chemical nature of the intermediates will be needed for further interpretation.

Original languageEnglish (US)
Pages (from-to)3257-3268
Number of pages12
JournalJournal of Physical Chemistry B
Volume126
Issue number17
DOIs
StatePublished - May 5 2022
Externally publishedYes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth?'. Together they form a unique fingerprint.

Cite this