Wavelet based automated postural event detection and activity classification with single IMU

Thurmon E. Lockhart, Rahul Soangra, Jian Zhang, Xuefang Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Mobility characteristics associated with activity of daily living such as sitting down, lying down, rising up, and walking are considered to be important in maintaining functional independence and healthy life style especially for the growing elderly population. Characteristics of postural transitions such as sit-to-stand are widely used by clinicians as a physical indicator of health, and walking is used as an important mobility assessment tool. Many tools have been developed to assist in the assessment of functional levels and to detect a person's activities during daily life. These include questionnaires, observation, diaries, kinetic and kinematic systems, and validated functional tests. These measures are costly and time consuming, rely on subjective patient recall and may not accurately reflect functional ability in the patient's home. In order to provide a low-cost, objective assessment of functional ability, inertial measurement unit (IMU) using MEMS technology has been employed to ascertain ADLs. These measures facilitate long-term monitoring of activity of daily living using wearable sensors. IMU system are desirable in monitoring human postures since they respond to both frequency and the intensity of movements and measure both dc (gravitational acceleration vector) and ac (acceleration due to body movement) components at a low cost. This has enabled the development of a small, lightweight, portable system that can be worn by a free-living subject without motion impediment - TEMPO (Technology Enabled Medical Precision Observation). Using this IMU system, we acquired indirect measures of biomechanical variables that can be used as an assessment of individual mobility characteristics with accuracy and recognition rates that are comparable to the modern motion capture systems. In this study, five subjects performed various ADLs and mobility measures such as posture transitions and gait characteristics were obtained. We developed postural event detection and classification algorithm using denoised signals from single wireless IMU placed at sternum. The algorithm was further validated and verified with motion capture system in laboratory environment. Wavelet denoising highlighted postural events and transition durations that further provided clinical information on postural control and motor coordination. The presented method can be applied in real life ambulatory monitoring approaches for assessing condition of elderly.

Original languageEnglish (US)
Title of host publication50th Annual Rocky Mountain Bioengineering Symposium and 50th International ISA Biomedical Sciences Instrumentation Symposium 2013
Pages225-234
Number of pages10
StatePublished - Sep 9 2013
Externally publishedYes
Event50th Annual Rocky Mountain Bioengineering Symposium and 50th International ISA Biomedical Sciences Instrumentation Symposium 2013 - Colorado Springs, CO, United States
Duration: Apr 5 2013Apr 7 2013

Publication series

Name50th Annual Rocky Mountain Bioengineering Symposium and 50th International ISA Biomedical Sciences Instrumentation Symposium 2013
Volume493

Other

Other50th Annual Rocky Mountain Bioengineering Symposium and 50th International ISA Biomedical Sciences Instrumentation Symposium 2013
Country/TerritoryUnited States
CityColorado Springs, CO
Period4/5/134/7/13

Keywords

  • Falls
  • Inertial Measurement Unit (IMU)
  • Locomotion
  • Postural event detection
  • Wavelet denoising

ASJC Scopus subject areas

  • Bioengineering
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Wavelet based automated postural event detection and activity classification with single IMU'. Together they form a unique fingerprint.

Cite this