Very early optical afterglows of gamma-ray bursts: Evidence for relative paucity of detection

Peter W A Roming, Patricia Schady, Derek B. Fox, Bing Zhang, Enwei Liang, Keith O. Mason, Rol Evert, David N. Burrows, Alex J. Blustin, Patricia T. Boyd, Peter Brown, Stephen T. Holland, Katherine Mcgowan, Wayne B. Landsman, Kim L. Page, James E. Rhoads, Simon R. Rosen, Daniel Vanden Berk, Scott D. Barthelmy, Alice A. BreeveldAntonino Cucchiara, Massimiliano De Pasquale, Edward E. Fenimore, Neil Gehrels, Caryl Gronwall, Dirk Grupe, Michael R. Goad, Mariya Ivanushkina, Cynthia James, Jamie A. Kennea, Shiho Kobayashi, Vanessa Mangano, Peter Mészáros, Adam N. Morgan, John A. Nousek, Julian P. Osborne, David M. Palmer, Tracey Poole, Martin D. Still, Gianpiero Tagliaferri, Silvia Zane

Research output: Contribution to journalArticle

74 Citations (Scopus)

Abstract

Very early observations with the Swift satellite of γ-ray burst (GRB) afterglows reveal that the optical component is not detected in a large number of cases. This is in contrast to the bright optical flashes previously discovered in some GRBs (e.g., GRB 990123 and GRB 021211). Comparisons of the X-ray afterglow flux to the optical afterglow flux and prompt γ-ray fluence is used to quantify the seemingly deficient optical, and in some cases X-ray, light at these early epochs. This comparison reveals that some of these bursts appear to have higher than normal γ-ray efficiencies. We discuss possible mechanisms and their feasibility for explaining the apparent lack of early optical emission. The mechanisms considered include, foreground extinction, circumburst absorption, Lyα blanketing and absorption due to high-redshift, low-density environments, rapid temporal decay, and intrinsic weakness of the reverse shock. Of these, foreground extinction, circumburst absorption, and high redshift provide the best explanations for most of the nondetections in our sample. There is tentative evidence of suppression of the strong reverse shock emission. This could be because of a Poynting flux-dominated flow or a pure nonrelativistic hydrodynatnic reverse shock.

Original languageEnglish (US)
Pages (from-to)1416-1422
Number of pages7
JournalAstrophysical Journal
Volume652
Issue number2 I
DOIs
StatePublished - Dec 1 2006
Externally publishedYes

Fingerprint

afterglows
gamma ray bursts
rays
shock
bursts
extinction
light emission
flash
fluence
x rays
time measurement
retarding
decay
detection
comparison

Keywords

  • Bursts
  • Gamma rays

ASJC Scopus subject areas

  • Space and Planetary Science

Cite this

Roming, P. W. A., Schady, P., Fox, D. B., Zhang, B., Liang, E., Mason, K. O., ... Zane, S. (2006). Very early optical afterglows of gamma-ray bursts: Evidence for relative paucity of detection. Astrophysical Journal, 652(2 I), 1416-1422. https://doi.org/10.1086/508481

Very early optical afterglows of gamma-ray bursts : Evidence for relative paucity of detection. / Roming, Peter W A; Schady, Patricia; Fox, Derek B.; Zhang, Bing; Liang, Enwei; Mason, Keith O.; Evert, Rol; Burrows, David N.; Blustin, Alex J.; Boyd, Patricia T.; Brown, Peter; Holland, Stephen T.; Mcgowan, Katherine; Landsman, Wayne B.; Page, Kim L.; Rhoads, James E.; Rosen, Simon R.; Berk, Daniel Vanden; Barthelmy, Scott D.; Breeveld, Alice A.; Cucchiara, Antonino; De Pasquale, Massimiliano; Fenimore, Edward E.; Gehrels, Neil; Gronwall, Caryl; Grupe, Dirk; Goad, Michael R.; Ivanushkina, Mariya; James, Cynthia; Kennea, Jamie A.; Kobayashi, Shiho; Mangano, Vanessa; Mészáros, Peter; Morgan, Adam N.; Nousek, John A.; Osborne, Julian P.; Palmer, David M.; Poole, Tracey; Still, Martin D.; Tagliaferri, Gianpiero; Zane, Silvia.

In: Astrophysical Journal, Vol. 652, No. 2 I, 01.12.2006, p. 1416-1422.

Research output: Contribution to journalArticle

Roming, PWA, Schady, P, Fox, DB, Zhang, B, Liang, E, Mason, KO, Evert, R, Burrows, DN, Blustin, AJ, Boyd, PT, Brown, P, Holland, ST, Mcgowan, K, Landsman, WB, Page, KL, Rhoads, JE, Rosen, SR, Berk, DV, Barthelmy, SD, Breeveld, AA, Cucchiara, A, De Pasquale, M, Fenimore, EE, Gehrels, N, Gronwall, C, Grupe, D, Goad, MR, Ivanushkina, M, James, C, Kennea, JA, Kobayashi, S, Mangano, V, Mészáros, P, Morgan, AN, Nousek, JA, Osborne, JP, Palmer, DM, Poole, T, Still, MD, Tagliaferri, G & Zane, S 2006, 'Very early optical afterglows of gamma-ray bursts: Evidence for relative paucity of detection', Astrophysical Journal, vol. 652, no. 2 I, pp. 1416-1422. https://doi.org/10.1086/508481
Roming PWA, Schady P, Fox DB, Zhang B, Liang E, Mason KO et al. Very early optical afterglows of gamma-ray bursts: Evidence for relative paucity of detection. Astrophysical Journal. 2006 Dec 1;652(2 I):1416-1422. https://doi.org/10.1086/508481
Roming, Peter W A ; Schady, Patricia ; Fox, Derek B. ; Zhang, Bing ; Liang, Enwei ; Mason, Keith O. ; Evert, Rol ; Burrows, David N. ; Blustin, Alex J. ; Boyd, Patricia T. ; Brown, Peter ; Holland, Stephen T. ; Mcgowan, Katherine ; Landsman, Wayne B. ; Page, Kim L. ; Rhoads, James E. ; Rosen, Simon R. ; Berk, Daniel Vanden ; Barthelmy, Scott D. ; Breeveld, Alice A. ; Cucchiara, Antonino ; De Pasquale, Massimiliano ; Fenimore, Edward E. ; Gehrels, Neil ; Gronwall, Caryl ; Grupe, Dirk ; Goad, Michael R. ; Ivanushkina, Mariya ; James, Cynthia ; Kennea, Jamie A. ; Kobayashi, Shiho ; Mangano, Vanessa ; Mészáros, Peter ; Morgan, Adam N. ; Nousek, John A. ; Osborne, Julian P. ; Palmer, David M. ; Poole, Tracey ; Still, Martin D. ; Tagliaferri, Gianpiero ; Zane, Silvia. / Very early optical afterglows of gamma-ray bursts : Evidence for relative paucity of detection. In: Astrophysical Journal. 2006 ; Vol. 652, No. 2 I. pp. 1416-1422.
@article{08b6191707484deb8d81f1b25b611c5c,
title = "Very early optical afterglows of gamma-ray bursts: Evidence for relative paucity of detection",
abstract = "Very early observations with the Swift satellite of γ-ray burst (GRB) afterglows reveal that the optical component is not detected in a large number of cases. This is in contrast to the bright optical flashes previously discovered in some GRBs (e.g., GRB 990123 and GRB 021211). Comparisons of the X-ray afterglow flux to the optical afterglow flux and prompt γ-ray fluence is used to quantify the seemingly deficient optical, and in some cases X-ray, light at these early epochs. This comparison reveals that some of these bursts appear to have higher than normal γ-ray efficiencies. We discuss possible mechanisms and their feasibility for explaining the apparent lack of early optical emission. The mechanisms considered include, foreground extinction, circumburst absorption, Lyα blanketing and absorption due to high-redshift, low-density environments, rapid temporal decay, and intrinsic weakness of the reverse shock. Of these, foreground extinction, circumburst absorption, and high redshift provide the best explanations for most of the nondetections in our sample. There is tentative evidence of suppression of the strong reverse shock emission. This could be because of a Poynting flux-dominated flow or a pure nonrelativistic hydrodynatnic reverse shock.",
keywords = "Bursts, Gamma rays",
author = "Roming, {Peter W A} and Patricia Schady and Fox, {Derek B.} and Bing Zhang and Enwei Liang and Mason, {Keith O.} and Rol Evert and Burrows, {David N.} and Blustin, {Alex J.} and Boyd, {Patricia T.} and Peter Brown and Holland, {Stephen T.} and Katherine Mcgowan and Landsman, {Wayne B.} and Page, {Kim L.} and Rhoads, {James E.} and Rosen, {Simon R.} and Berk, {Daniel Vanden} and Barthelmy, {Scott D.} and Breeveld, {Alice A.} and Antonino Cucchiara and {De Pasquale}, Massimiliano and Fenimore, {Edward E.} and Neil Gehrels and Caryl Gronwall and Dirk Grupe and Goad, {Michael R.} and Mariya Ivanushkina and Cynthia James and Kennea, {Jamie A.} and Shiho Kobayashi and Vanessa Mangano and Peter M{\'e}sz{\'a}ros and Morgan, {Adam N.} and Nousek, {John A.} and Osborne, {Julian P.} and Palmer, {David M.} and Tracey Poole and Still, {Martin D.} and Gianpiero Tagliaferri and Silvia Zane",
year = "2006",
month = "12",
day = "1",
doi = "10.1086/508481",
language = "English (US)",
volume = "652",
pages = "1416--1422",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing Ltd.",
number = "2 I",

}

TY - JOUR

T1 - Very early optical afterglows of gamma-ray bursts

T2 - Evidence for relative paucity of detection

AU - Roming, Peter W A

AU - Schady, Patricia

AU - Fox, Derek B.

AU - Zhang, Bing

AU - Liang, Enwei

AU - Mason, Keith O.

AU - Evert, Rol

AU - Burrows, David N.

AU - Blustin, Alex J.

AU - Boyd, Patricia T.

AU - Brown, Peter

AU - Holland, Stephen T.

AU - Mcgowan, Katherine

AU - Landsman, Wayne B.

AU - Page, Kim L.

AU - Rhoads, James E.

AU - Rosen, Simon R.

AU - Berk, Daniel Vanden

AU - Barthelmy, Scott D.

AU - Breeveld, Alice A.

AU - Cucchiara, Antonino

AU - De Pasquale, Massimiliano

AU - Fenimore, Edward E.

AU - Gehrels, Neil

AU - Gronwall, Caryl

AU - Grupe, Dirk

AU - Goad, Michael R.

AU - Ivanushkina, Mariya

AU - James, Cynthia

AU - Kennea, Jamie A.

AU - Kobayashi, Shiho

AU - Mangano, Vanessa

AU - Mészáros, Peter

AU - Morgan, Adam N.

AU - Nousek, John A.

AU - Osborne, Julian P.

AU - Palmer, David M.

AU - Poole, Tracey

AU - Still, Martin D.

AU - Tagliaferri, Gianpiero

AU - Zane, Silvia

PY - 2006/12/1

Y1 - 2006/12/1

N2 - Very early observations with the Swift satellite of γ-ray burst (GRB) afterglows reveal that the optical component is not detected in a large number of cases. This is in contrast to the bright optical flashes previously discovered in some GRBs (e.g., GRB 990123 and GRB 021211). Comparisons of the X-ray afterglow flux to the optical afterglow flux and prompt γ-ray fluence is used to quantify the seemingly deficient optical, and in some cases X-ray, light at these early epochs. This comparison reveals that some of these bursts appear to have higher than normal γ-ray efficiencies. We discuss possible mechanisms and their feasibility for explaining the apparent lack of early optical emission. The mechanisms considered include, foreground extinction, circumburst absorption, Lyα blanketing and absorption due to high-redshift, low-density environments, rapid temporal decay, and intrinsic weakness of the reverse shock. Of these, foreground extinction, circumburst absorption, and high redshift provide the best explanations for most of the nondetections in our sample. There is tentative evidence of suppression of the strong reverse shock emission. This could be because of a Poynting flux-dominated flow or a pure nonrelativistic hydrodynatnic reverse shock.

AB - Very early observations with the Swift satellite of γ-ray burst (GRB) afterglows reveal that the optical component is not detected in a large number of cases. This is in contrast to the bright optical flashes previously discovered in some GRBs (e.g., GRB 990123 and GRB 021211). Comparisons of the X-ray afterglow flux to the optical afterglow flux and prompt γ-ray fluence is used to quantify the seemingly deficient optical, and in some cases X-ray, light at these early epochs. This comparison reveals that some of these bursts appear to have higher than normal γ-ray efficiencies. We discuss possible mechanisms and their feasibility for explaining the apparent lack of early optical emission. The mechanisms considered include, foreground extinction, circumburst absorption, Lyα blanketing and absorption due to high-redshift, low-density environments, rapid temporal decay, and intrinsic weakness of the reverse shock. Of these, foreground extinction, circumburst absorption, and high redshift provide the best explanations for most of the nondetections in our sample. There is tentative evidence of suppression of the strong reverse shock emission. This could be because of a Poynting flux-dominated flow or a pure nonrelativistic hydrodynatnic reverse shock.

KW - Bursts

KW - Gamma rays

UR - http://www.scopus.com/inward/record.url?scp=33845865044&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33845865044&partnerID=8YFLogxK

U2 - 10.1086/508481

DO - 10.1086/508481

M3 - Article

AN - SCOPUS:33845865044

VL - 652

SP - 1416

EP - 1422

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 2 I

ER -