Ventilatory frequency and haemolymph acid-base status during short-term hypercapnia in the locust, Schistocerca nitens

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In this study, I investigated the role of the locust ventilatory system in haemolymph acid-base regulation during short-term (50 min) exposure to elevated environmental carbon dioxide. In American locusts, Schistocerca nitens, abdominal pumping frequency increased linearly with inspired PCO2 (P1CO2) to a P1CO2 of 107 mmHg (1 mmHg = 133.3 Pascals). Ventilatory frequency was strongly correlated with haemolymph acid-base variables, consistent with the hypothesis that changes in ventilatory frequency were caused by changes in haemolymph pH or PCO2. As inspired PCO2 increased, the partial pressure gradient for carbon dioxide from haemolymph to air decreased, reducing the changes in haemolymph pH. Slopes of in vivo and in vitro buffer lines were statistically indistinguishable, suggesting that changes in haemolymph pH in vivo were due primarily to changes in haemolymph PCO2. The results of this study indicate that the locust ventilatory system plays the dominant role in limitation of changes in haemolymph pH during short-term hypercapnia.

Original languageEnglish (US)
Pages (from-to)809-814
Number of pages6
JournalJournal of insect physiology
Volume35
Issue number11
DOIs
StatePublished - 1989
Externally publishedYes

Keywords

  • Schistocerca
  • acid-base regulation
  • hypercapnia
  • ventilatory control

ASJC Scopus subject areas

  • Physiology
  • Insect Science

Fingerprint

Dive into the research topics of 'Ventilatory frequency and haemolymph acid-base status during short-term hypercapnia in the locust, Schistocerca nitens'. Together they form a unique fingerprint.

Cite this