Variation in photosynthetic and nonphotosynthetic vegetation along edaphic and compositional gradients in northwestern Amazonia

M. A. Higgins, G. P. Asner, E. Perez, N. Elespuru, A. Alonso

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforests. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forests, possibly through changes in plant species composition.

Original languageEnglish (US)
Pages (from-to)3505-3513
Number of pages9
JournalBiogeosciences
Volume11
Issue number13
DOIs
StatePublished - Jul 3 2014
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Earth-Surface Processes

Cite this