TY - JOUR
T1 - Variation in activity rates may explain sexspecific dorsal color patterns in Habronattus jumping spiders
AU - Taylor, Lisa A.
AU - Cook, Collette
AU - McGraw, Kevin J.
N1 - Publisher Copyright:
© 2019 Taylor et al.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - In many animals, color pattern and behavior interact to deceive predators. For mimics, such deception can range from precise (near-perfect mimicry) to only subtle resemblance (imperfect mimicry) and such strategies often differ by sex because of differing ecological selection pressures. In this field study, we examine variation in behavior and ecology that may be linked with sex differences in dorsal color pattern in three sympatric species of Habronattus jumping spiders (H. clypeatus, H. hallani, H. pyrrithrix). Males of these species have conspicuous dorsal patterning that is subtly reminiscent of the general color patterns of wasps and bees, while females are cryptic. We show that, compared with females, these conspicuous males exhibited increased leg-waving behavior outside of the context of courtship; such behavior is common in jumping spiders that mimic wasps and bees presumably because a mimic's waving legs resemble antennae. Males of a fourth sympatric species (H. hirsutus) without conspicuous dorsal patterning did not exhibit increased leg-waving. These results are consistent with and offer preliminary support for the idea that male color and behavior may work together to deceive predators. We also examined whether higher movement rates of males (who must wander to find females) and/or different use of the microhabitat by the sexes could explain sexual dichromatism. We found that microhabitat use was similar for males and females, but males of all three conspicuously-colored species spent more time actively moving than females. To our knowledge, this is the first study to speculate that conspicuous male dorsal coloration in Habronattus may have a deceptive function, and to explore why dorsal coloration differs between the sexes.
AB - In many animals, color pattern and behavior interact to deceive predators. For mimics, such deception can range from precise (near-perfect mimicry) to only subtle resemblance (imperfect mimicry) and such strategies often differ by sex because of differing ecological selection pressures. In this field study, we examine variation in behavior and ecology that may be linked with sex differences in dorsal color pattern in three sympatric species of Habronattus jumping spiders (H. clypeatus, H. hallani, H. pyrrithrix). Males of these species have conspicuous dorsal patterning that is subtly reminiscent of the general color patterns of wasps and bees, while females are cryptic. We show that, compared with females, these conspicuous males exhibited increased leg-waving behavior outside of the context of courtship; such behavior is common in jumping spiders that mimic wasps and bees presumably because a mimic's waving legs resemble antennae. Males of a fourth sympatric species (H. hirsutus) without conspicuous dorsal patterning did not exhibit increased leg-waving. These results are consistent with and offer preliminary support for the idea that male color and behavior may work together to deceive predators. We also examined whether higher movement rates of males (who must wander to find females) and/or different use of the microhabitat by the sexes could explain sexual dichromatism. We found that microhabitat use was similar for males and females, but males of all three conspicuously-colored species spent more time actively moving than females. To our knowledge, this is the first study to speculate that conspicuous male dorsal coloration in Habronattus may have a deceptive function, and to explore why dorsal coloration differs between the sexes.
UR - http://www.scopus.com/inward/record.url?scp=85073450641&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073450641&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0223015
DO - 10.1371/journal.pone.0223015
M3 - Article
C2 - 31618242
AN - SCOPUS:85073450641
SN - 1932-6203
VL - 14
JO - PLoS One
JF - PLoS One
IS - 10
M1 - e0223015
ER -