Variable-free exploration of stochastic models: A gene regulatory network example

Radek Erban, Thomas A. Frewen, Xiao Wang, Timothy C. Elston, Ronald Coifman, Boaz Nadler, Ioannis G. Kevrekidis

Research output: Contribution to journalArticle

41 Scopus citations

Abstract

Finding coarse-grained, low-dimensional descriptions is an important task in the analysis of complex, stochastic models of gene regulatory networks. This task involves (a) identifying observables that best describe the state of these complex systems and (b) characterizing the dynamics of the observables. In a previous paper [R. Erban et al., J. Chem. Phys. 124, 084106 (2006)] the authors assumed that good observables were known a priori, and presented an equation-free approach to approximate coarse-grained quantities (i.e., effective drift and diffusion coefficients) that characterize the long-time behavior of the observables. Here we use diffusion maps [R. Coifman et al., Proc. Natl. Acad. Sci. U.S.A. 102, 7426 (2005)] to extract appropriate observables ("reduction coordinates") in an automated fashion; these involve the leading eigenvectors of a weighted Laplacian on a graph constructed from network simulation data. We present lifting and restriction procedures for translating between physical variables and these data-based observables. These procedures allow us to perform equation-free, coarse-grained computations characterizing the long-term dynamics through the design and processing of short bursts of stochastic simulation initialized at appropriate values of the data-based observables.

Original languageEnglish (US)
Article number155103
JournalJournal of Chemical Physics
Volume126
Issue number15
DOIs
Publication statusPublished - 2007
Externally publishedYes

    Fingerprint

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Erban, R., Frewen, T. A., Wang, X., Elston, T. C., Coifman, R., Nadler, B., & Kevrekidis, I. G. (2007). Variable-free exploration of stochastic models: A gene regulatory network example. Journal of Chemical Physics, 126(15), [155103]. https://doi.org/10.1063/1.2718529