Use of machine learning methods to reduce predictive error of groundwater models

Tianfang Xu, Albert J. Valocchi, Jaesik Choi, Eyal Amir

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Quantitative analyses of groundwater flow and transport typically rely on a physically-based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data-driven models (DDMs) to reduce the predictive error of physically-based groundwater models. Two machine learning techniques, the instance-based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real-world case studies of the Republican River Compact Administration model and the Spokane Valley-Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root-mean-square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically-based model.

Original languageEnglish (US)
Pages (from-to)448-460
Number of pages13
JournalGroundwater
Volume52
Issue number3
DOIs
StatePublished - 2014
Externally publishedYes

ASJC Scopus subject areas

  • Water Science and Technology
  • Computers in Earth Sciences

Fingerprint Dive into the research topics of 'Use of machine learning methods to reduce predictive error of groundwater models'. Together they form a unique fingerprint.

Cite this