Unsupervised fake news detection on social media: A generative approach

Shuo Yang, Kai Shu, Suhang Wang, Renjie Gu, Fan Wu, Huan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

40 Scopus citations

Abstract

Social media has become one of the main channels for people to access and consume news, due to the rapidness and low cost of news dissemination on it. However, such properties of social media also make it a hotbed of fake news dissemination, bringing negative impacts on both individuals and society. Therefore, detecting fake news has become a crucial problem attracting tremendous research effort. Most existing methods of fake news detection are supervised, which require an extensive amount of time and labor to build a reliably annotated dataset. In search of an alternative, in this paper, we investigate if we could detect fake news in an unsupervised manner. We treat truths of news and users' credibility as latent random variables, and exploit users' engagements on social media to identify their opinions towards the authenticity of news. We leverage a Bayesian network model to capture the conditional dependencies among the truths of news, the users' opinions, and the users' credibility. To solve the inference problem, we propose an efficient collapsed Gibbs sampling approach to infer the truths of news and the users' credibility without any labelled data. Experiment results on two datasets show that the proposed method significantly outperforms the compared unsupervised methods.

Original languageEnglish (US)
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages5644-5651
Number of pages8
ISBN (Electronic)9781577358091
StatePublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: Jan 27 2019Feb 1 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
CountryUnited States
CityHonolulu
Period1/27/192/1/19

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Unsupervised fake news detection on social media: A generative approach'. Together they form a unique fingerprint.

Cite this