### Abstract

Unsteady flow over a stationary sphere with small fluctuations in the free-stream velocity is considered at finite Reynolds number using a finite-difference method. The dependence of the unsteady drag on the frequency of the fluctuations is examined at various Reynolds numbers. It is found that the classical Stokes solution of the unsteady Stokes equation does not correctly describe the behaviour of the unsteady drag at low frequency. Numerical results indicate that the force increases linearly with frequency when the frequency is very small instead of increasing linearly with the square root of the frequency as the classical Stokes solution predicts. This implies that the force has a much shorter memory in the time domain. The incorrect behaviour of the Basset force at large times may explain the unphysical results found by Recks & Mckee (1984) wherein for a particle introduced to a turbulent flow the initial velocity difference between the particle and fluid has a finite contribution to the long-time particle diffusivity. The added mass component of the force at finite Reynolds number is found to be the same as predicted by creeping flow and potential theories. Effects of Reynolds number on the unsteady drag due to the fluctuating free-stream velocity are presented. The implications for particle motion in turbulence are discussed.

Original language | English (US) |
---|---|

Pages (from-to) | 613-631 |

Number of pages | 19 |

Journal | Journal of Fluid Mechanics |

Volume | 233 |

State | Published - Dec 1991 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Computational Mechanics
- Mechanics of Materials
- Physics and Astronomy(all)
- Condensed Matter Physics

### Cite this

*Journal of Fluid Mechanics*,

*233*, 613-631.

**Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity.** / Mei, Renwei; Lawrence, Christopher J.; Adrian, Ronald.

Research output: Contribution to journal › Article

*Journal of Fluid Mechanics*, vol. 233, pp. 613-631.

}

TY - JOUR

T1 - Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity

AU - Mei, Renwei

AU - Lawrence, Christopher J.

AU - Adrian, Ronald

PY - 1991/12

Y1 - 1991/12

N2 - Unsteady flow over a stationary sphere with small fluctuations in the free-stream velocity is considered at finite Reynolds number using a finite-difference method. The dependence of the unsteady drag on the frequency of the fluctuations is examined at various Reynolds numbers. It is found that the classical Stokes solution of the unsteady Stokes equation does not correctly describe the behaviour of the unsteady drag at low frequency. Numerical results indicate that the force increases linearly with frequency when the frequency is very small instead of increasing linearly with the square root of the frequency as the classical Stokes solution predicts. This implies that the force has a much shorter memory in the time domain. The incorrect behaviour of the Basset force at large times may explain the unphysical results found by Recks & Mckee (1984) wherein for a particle introduced to a turbulent flow the initial velocity difference between the particle and fluid has a finite contribution to the long-time particle diffusivity. The added mass component of the force at finite Reynolds number is found to be the same as predicted by creeping flow and potential theories. Effects of Reynolds number on the unsteady drag due to the fluctuating free-stream velocity are presented. The implications for particle motion in turbulence are discussed.

AB - Unsteady flow over a stationary sphere with small fluctuations in the free-stream velocity is considered at finite Reynolds number using a finite-difference method. The dependence of the unsteady drag on the frequency of the fluctuations is examined at various Reynolds numbers. It is found that the classical Stokes solution of the unsteady Stokes equation does not correctly describe the behaviour of the unsteady drag at low frequency. Numerical results indicate that the force increases linearly with frequency when the frequency is very small instead of increasing linearly with the square root of the frequency as the classical Stokes solution predicts. This implies that the force has a much shorter memory in the time domain. The incorrect behaviour of the Basset force at large times may explain the unphysical results found by Recks & Mckee (1984) wherein for a particle introduced to a turbulent flow the initial velocity difference between the particle and fluid has a finite contribution to the long-time particle diffusivity. The added mass component of the force at finite Reynolds number is found to be the same as predicted by creeping flow and potential theories. Effects of Reynolds number on the unsteady drag due to the fluctuating free-stream velocity are presented. The implications for particle motion in turbulence are discussed.

UR - http://www.scopus.com/inward/record.url?scp=0026377286&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026377286&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0026377286

VL - 233

SP - 613

EP - 631

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

SN - 0022-1120

ER -