TY - JOUR
T1 - Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3
AU - Leinenweber, Kurt
AU - Utsumi, Wataru
AU - Tsuchida, Yoshihiko
AU - Yagi, Takehiko
AU - Kurita, Kei
PY - 1991/12/1
Y1 - 1991/12/1
N2 - New high-pressure orthorhombic (GdFeO3-type) perovskite polymorphs of MnSnO3 and FeTiO3 have been observed using in situ powder X-ray diffraction in a diamond-anvil cell with synchrotron radiation. The materials are produced by the compression of the lithium niobate polymorphs of MnSnO3 and FeTiO3 at room temperature. The lithium niobate to perovskite transition occurs reversibly at 7 GPa in MnSnO3, with a volume change of -1.5%, and at 16 GPa in FeTiO3, with a volume change of -2.8%. Both transitions show hysteresis at room temperature. For MnSnO3 perovskite at 7.35 (8) GPa, the orthorhombic cell parameters are a=5.301 (2) A, b=5.445 (2) Å, c=7.690 (8) Å and V= 221.99 (15) Å3. Volume compression data were collected between 7 and 20 GPa. The bulk modulus calculated from the compression data is 257 (18) GPa in this pressure region. For FeTiO3 perovskite at 18.0 (5) GPa, cell parameters are a=5.022 (6) Å, b=5.169 (5) Å, c=7.239 (9) Å and V= 187.94 (36) Å3. Based on published data on the quench phases, the FeTiO3 perovskite breaks down to a rocksalt + baddelyite mixture of "FeO" and TiO2 at 23 GPa. This is the first experimental verification of the pressure-induced breakdown of a perovskite to simple oxides.
AB - New high-pressure orthorhombic (GdFeO3-type) perovskite polymorphs of MnSnO3 and FeTiO3 have been observed using in situ powder X-ray diffraction in a diamond-anvil cell with synchrotron radiation. The materials are produced by the compression of the lithium niobate polymorphs of MnSnO3 and FeTiO3 at room temperature. The lithium niobate to perovskite transition occurs reversibly at 7 GPa in MnSnO3, with a volume change of -1.5%, and at 16 GPa in FeTiO3, with a volume change of -2.8%. Both transitions show hysteresis at room temperature. For MnSnO3 perovskite at 7.35 (8) GPa, the orthorhombic cell parameters are a=5.301 (2) A, b=5.445 (2) Å, c=7.690 (8) Å and V= 221.99 (15) Å3. Volume compression data were collected between 7 and 20 GPa. The bulk modulus calculated from the compression data is 257 (18) GPa in this pressure region. For FeTiO3 perovskite at 18.0 (5) GPa, cell parameters are a=5.022 (6) Å, b=5.169 (5) Å, c=7.239 (9) Å and V= 187.94 (36) Å3. Based on published data on the quench phases, the FeTiO3 perovskite breaks down to a rocksalt + baddelyite mixture of "FeO" and TiO2 at 23 GPa. This is the first experimental verification of the pressure-induced breakdown of a perovskite to simple oxides.
UR - http://www.scopus.com/inward/record.url?scp=0001564846&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001564846&partnerID=8YFLogxK
U2 - 10.1007/BF00202576
DO - 10.1007/BF00202576
M3 - Article
AN - SCOPUS:0001564846
VL - 18
SP - 244
EP - 250
JO - Physics and Chemistry of Minerals
JF - Physics and Chemistry of Minerals
SN - 0342-1791
IS - 4
ER -