Universal features of Lifshitz Green’s functions from holography

Cynthia Keeler, Gino Knodel, James T. Liu, Kai Sun

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

We examine the behavior of the retarded Green’s function in theories with Lifshitz scaling symmetry, both through dual gravitational models and a direct field theory approach. In contrast with the case of a relativistic CFT, where the Green’s function is fixed (up to normalization) by symmetry, the generic Lifshitz Green’s function can a priori depend on an arbitrary function Gω^$$ \mathcal{G}\left(\widehat{\omega}\right) $$, where ω^=ω/k→z$$ \widehat{\omega}=\omega /{\left|\overrightarrow{k}\right|}^z $$ is the scale-invariant ratio of frequency to wavenumber, with dynamical exponent z. Nevertheless, we demonstrate that the imaginary part of the retarded Green’s function (i.e. the spectral function) of scalar operators is exponentially suppressed in a window of frequencies near zero. This behavior is universal in all Lifshitz theories without additional constraining symmetries. On the gravity side, this result is robust against higher derivative corrections, while on the field theory side we present two z = 2 examples where the exponential suppression arises from summing the perturbative expansion to infinite order.

Original languageEnglish (US)
Article number57
JournalJournal of High Energy Physics
Volume2015
Issue number8
DOIs
StatePublished - Aug 17 2015
Externally publishedYes

Fingerprint

holography
Green's functions
symmetry
retarding
exponents
gravitation
scalars
scaling
operators
expansion

Keywords

  • AdS-CFT Correspondence
  • Holography and condensed matter physics (AdS/CMT)

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

Universal features of Lifshitz Green’s functions from holography. / Keeler, Cynthia; Knodel, Gino; Liu, James T.; Sun, Kai.

In: Journal of High Energy Physics, Vol. 2015, No. 8, 57, 17.08.2015.

Research output: Contribution to journalArticle

Keeler, Cynthia ; Knodel, Gino ; Liu, James T. ; Sun, Kai. / Universal features of Lifshitz Green’s functions from holography. In: Journal of High Energy Physics. 2015 ; Vol. 2015, No. 8.
@article{4e5fe8ebc51c49198b07d01caf736bf8,
title = "Universal features of Lifshitz Green’s functions from holography",
abstract = "We examine the behavior of the retarded Green’s function in theories with Lifshitz scaling symmetry, both through dual gravitational models and a direct field theory approach. In contrast with the case of a relativistic CFT, where the Green’s function is fixed (up to normalization) by symmetry, the generic Lifshitz Green’s function can a priori depend on an arbitrary function Gω^$$ \mathcal{G}\left(\widehat{\omega}\right) $$, where ω^=ω/k→z$$ \widehat{\omega}=\omega /{\left|\overrightarrow{k}\right|}^z $$ is the scale-invariant ratio of frequency to wavenumber, with dynamical exponent z. Nevertheless, we demonstrate that the imaginary part of the retarded Green’s function (i.e. the spectral function) of scalar operators is exponentially suppressed in a window of frequencies near zero. This behavior is universal in all Lifshitz theories without additional constraining symmetries. On the gravity side, this result is robust against higher derivative corrections, while on the field theory side we present two z = 2 examples where the exponential suppression arises from summing the perturbative expansion to infinite order.",
keywords = "AdS-CFT Correspondence, Holography and condensed matter physics (AdS/CMT)",
author = "Cynthia Keeler and Gino Knodel and Liu, {James T.} and Kai Sun",
year = "2015",
month = "8",
day = "17",
doi = "10.1007/JHEP08(2015)057",
language = "English (US)",
volume = "2015",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer Verlag",
number = "8",

}

TY - JOUR

T1 - Universal features of Lifshitz Green’s functions from holography

AU - Keeler, Cynthia

AU - Knodel, Gino

AU - Liu, James T.

AU - Sun, Kai

PY - 2015/8/17

Y1 - 2015/8/17

N2 - We examine the behavior of the retarded Green’s function in theories with Lifshitz scaling symmetry, both through dual gravitational models and a direct field theory approach. In contrast with the case of a relativistic CFT, where the Green’s function is fixed (up to normalization) by symmetry, the generic Lifshitz Green’s function can a priori depend on an arbitrary function Gω^$$ \mathcal{G}\left(\widehat{\omega}\right) $$, where ω^=ω/k→z$$ \widehat{\omega}=\omega /{\left|\overrightarrow{k}\right|}^z $$ is the scale-invariant ratio of frequency to wavenumber, with dynamical exponent z. Nevertheless, we demonstrate that the imaginary part of the retarded Green’s function (i.e. the spectral function) of scalar operators is exponentially suppressed in a window of frequencies near zero. This behavior is universal in all Lifshitz theories without additional constraining symmetries. On the gravity side, this result is robust against higher derivative corrections, while on the field theory side we present two z = 2 examples where the exponential suppression arises from summing the perturbative expansion to infinite order.

AB - We examine the behavior of the retarded Green’s function in theories with Lifshitz scaling symmetry, both through dual gravitational models and a direct field theory approach. In contrast with the case of a relativistic CFT, where the Green’s function is fixed (up to normalization) by symmetry, the generic Lifshitz Green’s function can a priori depend on an arbitrary function Gω^$$ \mathcal{G}\left(\widehat{\omega}\right) $$, where ω^=ω/k→z$$ \widehat{\omega}=\omega /{\left|\overrightarrow{k}\right|}^z $$ is the scale-invariant ratio of frequency to wavenumber, with dynamical exponent z. Nevertheless, we demonstrate that the imaginary part of the retarded Green’s function (i.e. the spectral function) of scalar operators is exponentially suppressed in a window of frequencies near zero. This behavior is universal in all Lifshitz theories without additional constraining symmetries. On the gravity side, this result is robust against higher derivative corrections, while on the field theory side we present two z = 2 examples where the exponential suppression arises from summing the perturbative expansion to infinite order.

KW - AdS-CFT Correspondence

KW - Holography and condensed matter physics (AdS/CMT)

UR - http://www.scopus.com/inward/record.url?scp=84939133084&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84939133084&partnerID=8YFLogxK

U2 - 10.1007/JHEP08(2015)057

DO - 10.1007/JHEP08(2015)057

M3 - Article

AN - SCOPUS:84939133084

VL - 2015

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 8

M1 - 57

ER -