TY - JOUR
T1 - Understanding the origin of Tabula Rasa-induced defects in n-type Cz c-Si
T2 - The case of nitrogen atmosphere
AU - Ochoa, Jorge
AU - LaSalvia, Vincenzo
AU - Stradins, Paul
AU - Bertoni, Mariana I.
N1 - Funding Information:
We thank Ron Sinton and Cassidy Sainsbury from Sinton Instruments for their technical support and discussion during the calibration process of the WCT-120TS lifetime tester. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.
Funding Information:
We thank Ron Sinton and Cassidy Sainsbury from Sinton Instruments for their technical support and discussion during the calibration process of the WCT-120TS lifetime tester. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office . The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.
Publisher Copyright:
© 2022
PY - 2023/4
Y1 - 2023/4
N2 - Phosphorus-doped Czochralski-grown silicon (Cz-Si) has been gaining market share in the large-scale manufacturing of high-efficiency silicon (Si)-based photovoltaic (PV) devices thanks to higher carrier lifetimes than their boron-doped counterpart. However, the fabrication of n-type Cz-Si based solar cells often requires process steps with much higher temperatures and longer times than p-type Silicon. Defect interaction with the high temperatures during such processes tend to be detrimental to the n-type Cz-Si carrier lifetime, therefore limiting the final device efficiency. Short thermal anneals before cell processing, known as Tabula Rasa (TR), have been proposed to mitigate the thermally induced lifetime degradation during n-type Cz-Si solar cell fabrication. This work thoroughly investigates the defects responsible for the lifetime degradation after TR in a N2 atmosphere treatment. We use temperature-injection-dependent lifetime spectroscopy and the thickness variation method to decouple the effects of TR treatment in the bulk and the surface of the n-type Cz-Si wafers. Using the defect parameter contour mapping (DPCM), we identify the defect energy level (Et) and the capture cross-section ratio (k) of the most likely process-induced defect, which aligns with previously proposed Si vacancy-associated defects. The DPCM reveals that these vacancy-associated defects have a shallow energy level Et − Ev ∼0.13 eV and very efficient electron capture cross section k∼600. Unexpectedly, the bulk degradation due to vacancy defects in the volume of the wafer, is accompanied by a significant increase in the surface recombination as well. Through evaluating the surface recombination velocity temperature- and injection dependence, we show that after TR, at room temperature and for an injection level of 1015 cm−3, in a wafer passivated with a-Si:H(i) the surface recombination dominates the overall lifetime response. We hypothesize that the near surface vacancy-associated bulk defects play a role in lowering the electron diffusion current into the a-Si:H(i) from the c-Si(n) reducing the field-effect passivation.
AB - Phosphorus-doped Czochralski-grown silicon (Cz-Si) has been gaining market share in the large-scale manufacturing of high-efficiency silicon (Si)-based photovoltaic (PV) devices thanks to higher carrier lifetimes than their boron-doped counterpart. However, the fabrication of n-type Cz-Si based solar cells often requires process steps with much higher temperatures and longer times than p-type Silicon. Defect interaction with the high temperatures during such processes tend to be detrimental to the n-type Cz-Si carrier lifetime, therefore limiting the final device efficiency. Short thermal anneals before cell processing, known as Tabula Rasa (TR), have been proposed to mitigate the thermally induced lifetime degradation during n-type Cz-Si solar cell fabrication. This work thoroughly investigates the defects responsible for the lifetime degradation after TR in a N2 atmosphere treatment. We use temperature-injection-dependent lifetime spectroscopy and the thickness variation method to decouple the effects of TR treatment in the bulk and the surface of the n-type Cz-Si wafers. Using the defect parameter contour mapping (DPCM), we identify the defect energy level (Et) and the capture cross-section ratio (k) of the most likely process-induced defect, which aligns with previously proposed Si vacancy-associated defects. The DPCM reveals that these vacancy-associated defects have a shallow energy level Et − Ev ∼0.13 eV and very efficient electron capture cross section k∼600. Unexpectedly, the bulk degradation due to vacancy defects in the volume of the wafer, is accompanied by a significant increase in the surface recombination as well. Through evaluating the surface recombination velocity temperature- and injection dependence, we show that after TR, at room temperature and for an injection level of 1015 cm−3, in a wafer passivated with a-Si:H(i) the surface recombination dominates the overall lifetime response. We hypothesize that the near surface vacancy-associated bulk defects play a role in lowering the electron diffusion current into the a-Si:H(i) from the c-Si(n) reducing the field-effect passivation.
KW - Bulk lifetime characterization DPCM
KW - Defects silicon
KW - Surface passivation tabula rasa
KW - Thermally induce degradation
UR - http://www.scopus.com/inward/record.url?scp=85146432303&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85146432303&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2022.112159
DO - 10.1016/j.solmat.2022.112159
M3 - Article
AN - SCOPUS:85146432303
SN - 0927-0248
VL - 252
JO - Solar Cells
JF - Solar Cells
M1 - 112159
ER -