TY - JOUR
T1 - Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models
AU - Lu, Junyu
AU - Carbone, Gregory J.
AU - Grego, John M.
N1 - Funding Information:
This research has been conducted through the Carolinas Integrated Sciences & Assessments (CISA) program and supported by the National Oceanic and Atmospheric Administration (NOAA) Office (Grant No. NA11OAR4310148 and NA16OAR4310163). This work was also partially supported by a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Supplementary Table S1) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Future climate changes could alter hydrometeorological patterns and change the nature of droughts at global to regional scales. However, there are considerable uncertainties in future drought projections. Here, we focus on agricultural drought by analyzing surface soil moisture outputs from CMIP5 multi-model ensembles (MMEs) under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios. First, the annual mean soil moisture by the end of the 21st century shows statistically significant large-scale drying and limited areas of wetting for all scenarios, with stronger drying as the strength of radiative forcing increases. Second, the MME mean spatial extent of severe drought is projected to increase for all regions and all future RCP scenarios, and most notably in Central America (CAM), Europe and Mediterranean (EUM), Tropical South America (TSA), and South Africa (SAF). Third, the model uncertainty presents the largest source of uncertainty (over 80%) across the entire 21st century among the three sources of uncertainty: internal variability, model uncertainty, and scenario uncertainty. Finally, we find that the spatial pattern and magnitude of annual and seasonal signal to noise (S/N) in soil moisture anomalies do not change significantly by lead time, indicating that the spreads of uncertainties become larger as the signals become stronger.
AB - Future climate changes could alter hydrometeorological patterns and change the nature of droughts at global to regional scales. However, there are considerable uncertainties in future drought projections. Here, we focus on agricultural drought by analyzing surface soil moisture outputs from CMIP5 multi-model ensembles (MMEs) under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios. First, the annual mean soil moisture by the end of the 21st century shows statistically significant large-scale drying and limited areas of wetting for all scenarios, with stronger drying as the strength of radiative forcing increases. Second, the MME mean spatial extent of severe drought is projected to increase for all regions and all future RCP scenarios, and most notably in Central America (CAM), Europe and Mediterranean (EUM), Tropical South America (TSA), and South Africa (SAF). Third, the model uncertainty presents the largest source of uncertainty (over 80%) across the entire 21st century among the three sources of uncertainty: internal variability, model uncertainty, and scenario uncertainty. Finally, we find that the spatial pattern and magnitude of annual and seasonal signal to noise (S/N) in soil moisture anomalies do not change significantly by lead time, indicating that the spreads of uncertainties become larger as the signals become stronger.
UR - http://www.scopus.com/inward/record.url?scp=85063318884&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063318884&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-41196-z
DO - 10.1038/s41598-019-41196-z
M3 - Article
C2 - 30894624
AN - SCOPUS:85063318884
SN - 2045-2322
VL - 9
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 4922
ER -