Ultrawide-Bandgap Semiconductors

Research Opportunities and Challenges

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam & 13 others P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, Robert Nemanich, R. C.N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, J. A. Simmons

Research output: Contribution to journalReview article

97 Citations (Scopus)

Abstract

Ultrawide-bandgap (UWBG) semiconductors, with bandgaps significantly wider than the 3.4 eV of GaN, represent an exciting and challenging new area of research in semiconductor materials, physics, devices, and applications. Because many figures-of-merit for device performance scale nonlinearly with bandgap, these semiconductors have long been known to have compelling potential advantages over their narrower-bandgap cousins in high-power and RF electronics, as well as in deep-UV optoelectronics, quantum information, and extreme-environment applications. Only recently, however, have the UWBG semiconductor materials, such as high Al-content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near-term possibility. In this article, the materials, physics, device and application research opportunities and challenges for advancing their state of the art are surveyed.

Original languageEnglish (US)
Article number1600501
JournalAdvanced Electronic Materials
Volume4
Issue number1
DOIs
StatePublished - Jan 1 2018

Fingerprint

Energy gap
Semiconductor materials
Physics
Diamond
Optoelectronic devices
Diamonds
Electronic equipment

Keywords

  • aluminum nitride
  • boron nitride
  • diamond
  • extreme environments
  • gallium oxide
  • power electronics
  • ultrawide bandgaps
  • UV-C

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials

Cite this

Tsao, J. Y., Chowdhury, S., Hollis, M. A., Jena, D., Johnson, N. M., Jones, K. A., ... Simmons, J. A. (2018). Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Advanced Electronic Materials, 4(1), [1600501]. https://doi.org/10.1002/aelm.201600501

Ultrawide-Bandgap Semiconductors : Research Opportunities and Challenges. / Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; Jena, D.; Johnson, N. M.; Jones, K. A.; Kaplar, R. J.; Rajan, S.; Van de Walle, C. G.; Bellotti, E.; Chua, C. L.; Collazo, R.; Coltrin, M. E.; Cooper, J. A.; Evans, K. R.; Graham, S.; Grotjohn, T. A.; Heller, E. R.; Higashiwaki, M.; Islam, M. S.; Juodawlkis, P. W.; Khan, M. A.; Koehler, A. D.; Leach, J. H.; Mishra, U. K.; Nemanich, Robert; Pilawa-Podgurski, R. C.N.; Shealy, J. B.; Sitar, Z.; Tadjer, M. J.; Witulski, A. F.; Wraback, M.; Simmons, J. A.

In: Advanced Electronic Materials, Vol. 4, No. 1, 1600501, 01.01.2018.

Research output: Contribution to journalReview article

Tsao, JY, Chowdhury, S, Hollis, MA, Jena, D, Johnson, NM, Jones, KA, Kaplar, RJ, Rajan, S, Van de Walle, CG, Bellotti, E, Chua, CL, Collazo, R, Coltrin, ME, Cooper, JA, Evans, KR, Graham, S, Grotjohn, TA, Heller, ER, Higashiwaki, M, Islam, MS, Juodawlkis, PW, Khan, MA, Koehler, AD, Leach, JH, Mishra, UK, Nemanich, R, Pilawa-Podgurski, RCN, Shealy, JB, Sitar, Z, Tadjer, MJ, Witulski, AF, Wraback, M & Simmons, JA 2018, 'Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges', Advanced Electronic Materials, vol. 4, no. 1, 1600501. https://doi.org/10.1002/aelm.201600501
Tsao JY, Chowdhury S, Hollis MA, Jena D, Johnson NM, Jones KA et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Advanced Electronic Materials. 2018 Jan 1;4(1). 1600501. https://doi.org/10.1002/aelm.201600501
Tsao, J. Y. ; Chowdhury, S. ; Hollis, M. A. ; Jena, D. ; Johnson, N. M. ; Jones, K. A. ; Kaplar, R. J. ; Rajan, S. ; Van de Walle, C. G. ; Bellotti, E. ; Chua, C. L. ; Collazo, R. ; Coltrin, M. E. ; Cooper, J. A. ; Evans, K. R. ; Graham, S. ; Grotjohn, T. A. ; Heller, E. R. ; Higashiwaki, M. ; Islam, M. S. ; Juodawlkis, P. W. ; Khan, M. A. ; Koehler, A. D. ; Leach, J. H. ; Mishra, U. K. ; Nemanich, Robert ; Pilawa-Podgurski, R. C.N. ; Shealy, J. B. ; Sitar, Z. ; Tadjer, M. J. ; Witulski, A. F. ; Wraback, M. ; Simmons, J. A. / Ultrawide-Bandgap Semiconductors : Research Opportunities and Challenges. In: Advanced Electronic Materials. 2018 ; Vol. 4, No. 1.
@article{f828484a86e34739a6b7439ccdbc6daf,
title = "Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges",
abstract = "Ultrawide-bandgap (UWBG) semiconductors, with bandgaps significantly wider than the 3.4 eV of GaN, represent an exciting and challenging new area of research in semiconductor materials, physics, devices, and applications. Because many figures-of-merit for device performance scale nonlinearly with bandgap, these semiconductors have long been known to have compelling potential advantages over their narrower-bandgap cousins in high-power and RF electronics, as well as in deep-UV optoelectronics, quantum information, and extreme-environment applications. Only recently, however, have the UWBG semiconductor materials, such as high Al-content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near-term possibility. In this article, the materials, physics, device and application research opportunities and challenges for advancing their state of the art are surveyed.",
keywords = "aluminum nitride, boron nitride, diamond, extreme environments, gallium oxide, power electronics, ultrawide bandgaps, UV-C",
author = "Tsao, {J. Y.} and S. Chowdhury and Hollis, {M. A.} and D. Jena and Johnson, {N. M.} and Jones, {K. A.} and Kaplar, {R. J.} and S. Rajan and {Van de Walle}, {C. G.} and E. Bellotti and Chua, {C. L.} and R. Collazo and Coltrin, {M. E.} and Cooper, {J. A.} and Evans, {K. R.} and S. Graham and Grotjohn, {T. A.} and Heller, {E. R.} and M. Higashiwaki and Islam, {M. S.} and Juodawlkis, {P. W.} and Khan, {M. A.} and Koehler, {A. D.} and Leach, {J. H.} and Mishra, {U. K.} and Robert Nemanich and Pilawa-Podgurski, {R. C.N.} and Shealy, {J. B.} and Z. Sitar and Tadjer, {M. J.} and Witulski, {A. F.} and M. Wraback and Simmons, {J. A.}",
year = "2018",
month = "1",
day = "1",
doi = "10.1002/aelm.201600501",
language = "English (US)",
volume = "4",
journal = "Advanced Electronic Materials",
issn = "2199-160X",
publisher = "Wiley-VCH Verlag",
number = "1",

}

TY - JOUR

T1 - Ultrawide-Bandgap Semiconductors

T2 - Research Opportunities and Challenges

AU - Tsao, J. Y.

AU - Chowdhury, S.

AU - Hollis, M. A.

AU - Jena, D.

AU - Johnson, N. M.

AU - Jones, K. A.

AU - Kaplar, R. J.

AU - Rajan, S.

AU - Van de Walle, C. G.

AU - Bellotti, E.

AU - Chua, C. L.

AU - Collazo, R.

AU - Coltrin, M. E.

AU - Cooper, J. A.

AU - Evans, K. R.

AU - Graham, S.

AU - Grotjohn, T. A.

AU - Heller, E. R.

AU - Higashiwaki, M.

AU - Islam, M. S.

AU - Juodawlkis, P. W.

AU - Khan, M. A.

AU - Koehler, A. D.

AU - Leach, J. H.

AU - Mishra, U. K.

AU - Nemanich, Robert

AU - Pilawa-Podgurski, R. C.N.

AU - Shealy, J. B.

AU - Sitar, Z.

AU - Tadjer, M. J.

AU - Witulski, A. F.

AU - Wraback, M.

AU - Simmons, J. A.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Ultrawide-bandgap (UWBG) semiconductors, with bandgaps significantly wider than the 3.4 eV of GaN, represent an exciting and challenging new area of research in semiconductor materials, physics, devices, and applications. Because many figures-of-merit for device performance scale nonlinearly with bandgap, these semiconductors have long been known to have compelling potential advantages over their narrower-bandgap cousins in high-power and RF electronics, as well as in deep-UV optoelectronics, quantum information, and extreme-environment applications. Only recently, however, have the UWBG semiconductor materials, such as high Al-content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near-term possibility. In this article, the materials, physics, device and application research opportunities and challenges for advancing their state of the art are surveyed.

AB - Ultrawide-bandgap (UWBG) semiconductors, with bandgaps significantly wider than the 3.4 eV of GaN, represent an exciting and challenging new area of research in semiconductor materials, physics, devices, and applications. Because many figures-of-merit for device performance scale nonlinearly with bandgap, these semiconductors have long been known to have compelling potential advantages over their narrower-bandgap cousins in high-power and RF electronics, as well as in deep-UV optoelectronics, quantum information, and extreme-environment applications. Only recently, however, have the UWBG semiconductor materials, such as high Al-content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near-term possibility. In this article, the materials, physics, device and application research opportunities and challenges for advancing their state of the art are surveyed.

KW - aluminum nitride

KW - boron nitride

KW - diamond

KW - extreme environments

KW - gallium oxide

KW - power electronics

KW - ultrawide bandgaps

KW - UV-C

UR - http://www.scopus.com/inward/record.url?scp=85037358855&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85037358855&partnerID=8YFLogxK

U2 - 10.1002/aelm.201600501

DO - 10.1002/aelm.201600501

M3 - Review article

VL - 4

JO - Advanced Electronic Materials

JF - Advanced Electronic Materials

SN - 2199-160X

IS - 1

M1 - 1600501

ER -