Two-weight ternary codes and the equation y2 = 4 × 3a + 13

Andrew Bremner, R. Calderbank, P. Hanlon, P. Morton, J. Wolfskill

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

This paper determines the parameters of all two-weight ternary codes C with the property that the minimum weight in the dual code C is at least 4. This yields a characterization of uniformly packed ternary [n, k, 4] codes. The proof rests on finding all integer solutions of the equation y2 = 4 × 3a + 13.

Original languageEnglish (US)
Pages (from-to)212-234
Number of pages23
JournalJournal of Number Theory
Volume16
Issue number2
DOIs
StatePublished - 1983
Externally publishedYes

Fingerprint

Ternary
Dual Codes
Integer

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Two-weight ternary codes and the equation y2 = 4 × 3a + 13. / Bremner, Andrew; Calderbank, R.; Hanlon, P.; Morton, P.; Wolfskill, J.

In: Journal of Number Theory, Vol. 16, No. 2, 1983, p. 212-234.

Research output: Contribution to journalArticle

Bremner, A, Calderbank, R, Hanlon, P, Morton, P & Wolfskill, J 1983, 'Two-weight ternary codes and the equation y2 = 4 × 3a + 13', Journal of Number Theory, vol. 16, no. 2, pp. 212-234. https://doi.org/10.1016/0022-314X(83)90042-2
Bremner, Andrew ; Calderbank, R. ; Hanlon, P. ; Morton, P. ; Wolfskill, J. / Two-weight ternary codes and the equation y2 = 4 × 3a + 13. In: Journal of Number Theory. 1983 ; Vol. 16, No. 2. pp. 212-234.
@article{c42e27195bbf4e2f812939a1569cba50,
title = "Two-weight ternary codes and the equation y2 = 4 × 3a + 13",
abstract = "This paper determines the parameters of all two-weight ternary codes C with the property that the minimum weight in the dual code C⊥ is at least 4. This yields a characterization of uniformly packed ternary [n, k, 4] codes. The proof rests on finding all integer solutions of the equation y2 = 4 × 3a + 13.",
author = "Andrew Bremner and R. Calderbank and P. Hanlon and P. Morton and J. Wolfskill",
year = "1983",
doi = "10.1016/0022-314X(83)90042-2",
language = "English (US)",
volume = "16",
pages = "212--234",
journal = "Journal of Number Theory",
issn = "0022-314X",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Two-weight ternary codes and the equation y2 = 4 × 3a + 13

AU - Bremner, Andrew

AU - Calderbank, R.

AU - Hanlon, P.

AU - Morton, P.

AU - Wolfskill, J.

PY - 1983

Y1 - 1983

N2 - This paper determines the parameters of all two-weight ternary codes C with the property that the minimum weight in the dual code C⊥ is at least 4. This yields a characterization of uniformly packed ternary [n, k, 4] codes. The proof rests on finding all integer solutions of the equation y2 = 4 × 3a + 13.

AB - This paper determines the parameters of all two-weight ternary codes C with the property that the minimum weight in the dual code C⊥ is at least 4. This yields a characterization of uniformly packed ternary [n, k, 4] codes. The proof rests on finding all integer solutions of the equation y2 = 4 × 3a + 13.

UR - http://www.scopus.com/inward/record.url?scp=48749148654&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=48749148654&partnerID=8YFLogxK

U2 - 10.1016/0022-314X(83)90042-2

DO - 10.1016/0022-314X(83)90042-2

M3 - Article

AN - SCOPUS:48749148654

VL - 16

SP - 212

EP - 234

JO - Journal of Number Theory

JF - Journal of Number Theory

SN - 0022-314X

IS - 2

ER -