Turbulence strength C2 n estimation from video using physics-based deep learning

Ripon Kumar Saha, Esen Salcin, Jihoo Kim, Joseph Smith, Suren Jayasuriya

Research output: Contribution to journalArticlepeer-review

Abstract

Images captured from a long distance suffer from dynamic image distortion due to turbulent flowof air cells with random temperatures, and thus refractive indices. This phenomenon, known as image dancing, is commonly characterized by its refractive-index structure constant C2 n as a measure of the turbulence strength. For many applications such as atmospheric forecast model, long-range/astronomy imaging, and aviation safety, optical communication technology, C2 n estimation is critical for accurately sensing the turbulent environment. Previous methods for C2 n estimation include estimation from meteorological data (temperature, relative humidity, wind shear, etc.) for single-point measurements, two-ended pathlength measurements from optical scintillometer for path-averaged C2 n, and more recently estimating C2 n from passive video cameras for low cost and hardware complexity. In this paper, we present a comparative analysis of classical image gradient methods for C2 n estimation and modern deep learning-based methods leveraging convolutional neural networks. To enable this, we collect a dataset of video capture along with reference scintillometer measurements for ground truth, and we release this unique dataset to the scientific community. We observe that deep learning methods can achieve higher accuracy when trained on similar data, but suffer from generalization errors to other, unseen imagery as compared to classical methods. To overcome this trade-off, we present a novel physics-based network architecture that combines learned convolutional layers with a differentiable image gradient method that maintains high accuracy while being generalizable across image datasets.

Original languageEnglish (US)
Pages (from-to)40854-40870
Number of pages17
JournalOptics Express
Volume30
Issue number22
DOIs
StatePublished - Oct 24 2022

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Turbulence strength C2 n estimation from video using physics-based deep learning'. Together they form a unique fingerprint.

Cite this