Transverse canyon incision and sedimentary basin excavation driven by drainage integration, Aravaipa Creek, AZ, USA

Matthew C. Jungers, Arjun Heimsath

Research output: Contribution to journalArticle

Abstract

Drainage reorganization events have the potential to drive incision and erosion at high rates normally attributed to tectonic or climatic forcing. It can be difficult, however, to isolate the signal of transient events driven by drainage integration from longer term tectonic or climatic forcing. We exploit an ideal field setting in Aravaipa Creek Basin of southeastern Arizona, USA, to isolate just such a signal. Aravaipa Creek Basin underwent a period of transient incision that formed Aravaipa Canyon, evacuating a significant volume of sedimentary basin fill and Tertiary bedrock from the previously internally drained basin. We use digital terrain analyses to reconstruct the pre-incision landscapes of both Aravaipa Creek Basin and the adjacent Lower San Pedro Basin, which we use to quantify the magnitude of incision and erosion since the drainage basins integrated. Terrestrial cosmogenic nuclide burial dates from 10Be and 26Al concentrations in latest stage basin fill in Aravaipa Creek enable us to calculate long-term incision and erosion rates from 3 Myr to the present. A 10Be concentration–depth profile from the Lower San Pedro Basin confirms that the San Pedro River incised into its high stand deposits prior to 350 000–400 000 years ago. Combining our landscape reconstructions with these age constraints, we determine that the transient rates of incision that created Aravaipa Canyon were 150 m/Myr or more, but that the background rate of erosion since integration is an order of magnitude lower, between 10 and 20 m/Myr. These results support our growing understanding that tectonic and climatic forcings need not apply for all episodes of rapid, transient incision and erosion during landscape evolution.

Original languageEnglish (US)
JournalEarth Surface Processes and Landforms
DOIs
StatePublished - Jan 1 2019

Fingerprint

sedimentary basin
canyon
erosion
excavation
drainage
basin
basin fill
tectonics
event
reorganization
landscape evolution
funeral
erosion rate
drainage basin
reconstruction
river
creek
bedrock
present
rate

Keywords

  • basin and range
  • drainage integration
  • evolution
  • geomorphology
  • landscape
  • transient response

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Earth-Surface Processes
  • Earth and Planetary Sciences (miscellaneous)

Cite this

@article{c96b02bac2ad40a5ba593064c03636ff,
title = "Transverse canyon incision and sedimentary basin excavation driven by drainage integration, Aravaipa Creek, AZ, USA",
abstract = "Drainage reorganization events have the potential to drive incision and erosion at high rates normally attributed to tectonic or climatic forcing. It can be difficult, however, to isolate the signal of transient events driven by drainage integration from longer term tectonic or climatic forcing. We exploit an ideal field setting in Aravaipa Creek Basin of southeastern Arizona, USA, to isolate just such a signal. Aravaipa Creek Basin underwent a period of transient incision that formed Aravaipa Canyon, evacuating a significant volume of sedimentary basin fill and Tertiary bedrock from the previously internally drained basin. We use digital terrain analyses to reconstruct the pre-incision landscapes of both Aravaipa Creek Basin and the adjacent Lower San Pedro Basin, which we use to quantify the magnitude of incision and erosion since the drainage basins integrated. Terrestrial cosmogenic nuclide burial dates from 10Be and 26Al concentrations in latest stage basin fill in Aravaipa Creek enable us to calculate long-term incision and erosion rates from 3 Myr to the present. A 10Be concentration–depth profile from the Lower San Pedro Basin confirms that the San Pedro River incised into its high stand deposits prior to 350 000–400 000 years ago. Combining our landscape reconstructions with these age constraints, we determine that the transient rates of incision that created Aravaipa Canyon were 150 m/Myr or more, but that the background rate of erosion since integration is an order of magnitude lower, between 10 and 20 m/Myr. These results support our growing understanding that tectonic and climatic forcings need not apply for all episodes of rapid, transient incision and erosion during landscape evolution.",
keywords = "basin and range, drainage integration, evolution, geomorphology, landscape, transient response",
author = "Jungers, {Matthew C.} and Arjun Heimsath",
year = "2019",
month = "1",
day = "1",
doi = "10.1002/esp.4556",
language = "English (US)",
journal = "Earth Surface Processes and Landforms",
issn = "0197-9337",
publisher = "John Wiley and Sons Ltd",

}

TY - JOUR

T1 - Transverse canyon incision and sedimentary basin excavation driven by drainage integration, Aravaipa Creek, AZ, USA

AU - Jungers, Matthew C.

AU - Heimsath, Arjun

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Drainage reorganization events have the potential to drive incision and erosion at high rates normally attributed to tectonic or climatic forcing. It can be difficult, however, to isolate the signal of transient events driven by drainage integration from longer term tectonic or climatic forcing. We exploit an ideal field setting in Aravaipa Creek Basin of southeastern Arizona, USA, to isolate just such a signal. Aravaipa Creek Basin underwent a period of transient incision that formed Aravaipa Canyon, evacuating a significant volume of sedimentary basin fill and Tertiary bedrock from the previously internally drained basin. We use digital terrain analyses to reconstruct the pre-incision landscapes of both Aravaipa Creek Basin and the adjacent Lower San Pedro Basin, which we use to quantify the magnitude of incision and erosion since the drainage basins integrated. Terrestrial cosmogenic nuclide burial dates from 10Be and 26Al concentrations in latest stage basin fill in Aravaipa Creek enable us to calculate long-term incision and erosion rates from 3 Myr to the present. A 10Be concentration–depth profile from the Lower San Pedro Basin confirms that the San Pedro River incised into its high stand deposits prior to 350 000–400 000 years ago. Combining our landscape reconstructions with these age constraints, we determine that the transient rates of incision that created Aravaipa Canyon were 150 m/Myr or more, but that the background rate of erosion since integration is an order of magnitude lower, between 10 and 20 m/Myr. These results support our growing understanding that tectonic and climatic forcings need not apply for all episodes of rapid, transient incision and erosion during landscape evolution.

AB - Drainage reorganization events have the potential to drive incision and erosion at high rates normally attributed to tectonic or climatic forcing. It can be difficult, however, to isolate the signal of transient events driven by drainage integration from longer term tectonic or climatic forcing. We exploit an ideal field setting in Aravaipa Creek Basin of southeastern Arizona, USA, to isolate just such a signal. Aravaipa Creek Basin underwent a period of transient incision that formed Aravaipa Canyon, evacuating a significant volume of sedimentary basin fill and Tertiary bedrock from the previously internally drained basin. We use digital terrain analyses to reconstruct the pre-incision landscapes of both Aravaipa Creek Basin and the adjacent Lower San Pedro Basin, which we use to quantify the magnitude of incision and erosion since the drainage basins integrated. Terrestrial cosmogenic nuclide burial dates from 10Be and 26Al concentrations in latest stage basin fill in Aravaipa Creek enable us to calculate long-term incision and erosion rates from 3 Myr to the present. A 10Be concentration–depth profile from the Lower San Pedro Basin confirms that the San Pedro River incised into its high stand deposits prior to 350 000–400 000 years ago. Combining our landscape reconstructions with these age constraints, we determine that the transient rates of incision that created Aravaipa Canyon were 150 m/Myr or more, but that the background rate of erosion since integration is an order of magnitude lower, between 10 and 20 m/Myr. These results support our growing understanding that tectonic and climatic forcings need not apply for all episodes of rapid, transient incision and erosion during landscape evolution.

KW - basin and range

KW - drainage integration

KW - evolution

KW - geomorphology

KW - landscape

KW - transient response

UR - http://www.scopus.com/inward/record.url?scp=85060785861&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060785861&partnerID=8YFLogxK

U2 - 10.1002/esp.4556

DO - 10.1002/esp.4556

M3 - Article

AN - SCOPUS:85060785861

JO - Earth Surface Processes and Landforms

JF - Earth Surface Processes and Landforms

SN - 0197-9337

ER -