TY - JOUR
T1 - Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents
AU - Upham, Nathan S.
AU - Ojala-Barbour, Reed
AU - Brito M, Jorge
AU - Velazco, Paúl M.
AU - Patterson, Bruce D.
N1 - Funding Information:
We extend thanks to the numerous collectors whose specimens made this study possible, including Glenda Pozo for assistance in capturing Mesomys cf. leniceps, and the Ministerio del Ambiente de Morona Santiago, Ecuador for authorizing research permit N° 04-2012-I-B-DPMS/MAE. Molecular data was generated with essential help from the McMaster Ancient DNA Centre, including technical support from Hendrik Poinar, Melanie Kuch, and Jake Enk; Universidade Federal do Espírito Santo with assistance from Yuri Leite, Leonora Costa, Carol Loss, and Roger Guimarães; and the Pritzker Laboratory for Molecular Systematics and Evolution with guidance from Kevin Feldheim and Brian Wray. We also thank Burton Lim at the Royal Ontario Museum for receipt of a tissue loan, and Jim Patton for providing cyt-b sequences for Mesomys. Fiona Reid and University of Chicago Press generously allowed us to reproduce the illustrations on Figure 3 and the cover page. NSU thanks members of his doctoral committee (Trevor Price, David Jablonski, and Richard Ree) for thoughtful suggestions on this chapter of his dissertation. Earlier drafts of this manuscript were improved by critical comments from Alexandre Antonelli, Diego Verzi, Corrie Moreau, John Bates, Steadman Upham, and Naomi Stewart. We thank the Committee on Evolutionary Biology for providing the freedom to pursue this study, and essential administrative support from Carolyn Johnson, Libby Eakin, and Sandra Akbar. This study was conducted under NSF Doctoral Dissertation Improvement Grant DEB-1110805 to BDP and NSU, and with the support of the Barbara E. Brown Fund for Mammal Research (FMNH) to ROB and BDP, and a gift from Walt and Ellen Newsom.
PY - 2013
Y1 - 2013
N2 - Background: The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt- b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. Results: Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. Conclusions: Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and Amazonian centers of endemism appear enriched by lineages that originated in the other region. Our survey of other South American lineages suggests a pattern of reciprocal exchange between these regions - among mammals, birds, amphibians, and insects we found no fewer than 87 transitions between the Andes and Amazon from Miocene-Pleistocene. Because no clear trend emerges between the timing and polarity of transitions, or in their relative frequency, we suggest that reciprocal exchange between tropical highland and lowland faunas in South America has been a continual process since ca. 12 Ma.
AB - Background: The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt- b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. Results: Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. Conclusions: Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and Amazonian centers of endemism appear enriched by lineages that originated in the other region. Our survey of other South American lineages suggests a pattern of reciprocal exchange between these regions - among mammals, birds, amphibians, and insects we found no fewer than 87 transitions between the Andes and Amazon from Miocene-Pleistocene. Because no clear trend emerges between the timing and polarity of transitions, or in their relative frequency, we suggest that reciprocal exchange between tropical highland and lowland faunas in South America has been a continual process since ca. 12 Ma.
KW - Amazonia
KW - Andes
KW - Biogeography
KW - Divergence timing
KW - Echimyidae
KW - Ex situ diversification
KW - Molecular phylogeny
KW - Neotropics
KW - Rodentia
KW - South America
UR - http://www.scopus.com/inward/record.url?scp=84883688433&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883688433&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-13-191
DO - 10.1186/1471-2148-13-191
M3 - Article
C2 - 24015814
AN - SCOPUS:84883688433
SN - 1472-6785
VL - 13
JO - BMC Ecology and Evolution
JF - BMC Ecology and Evolution
IS - 1
M1 - 191
ER -