Transfer learning algorithms for autonomous reconfiguration of wearable systems

Ramyar Saeedi, Hassan Ghasemzadeh, Assefaw H. Gebremedhin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

Wearables have emerged as a revolutionary technology in many application domains including healthcare and fitness. Machine learning algorithms, which form the core intelligence of wearables, traditionally deduce a computational model from a set of training examples to detect events of interest (e.g. activity type). However, in the dynamic environment in which wearables typically operate in, the accuracy of a computational model drops whenever changes in configuration of the system (such as device type and sensor orientation) occur. Therefore, there is a need to develop systems which can adapt to the new configuration autonomously. In this paper, using transfer learning as an organizing principle, we develop several algorithms for data mapping. The data mapping algorithms employ effective signal similarity methods and are used to adapt the system to the new configuration. We demonstrate the efficacy of the data mapping algorithms using a publicly available dataset on human activity recognition.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016
EditorsRonay Ak, George Karypis, Yinglong Xia, Xiaohua Tony Hu, Philip S. Yu, James Joshi, Lyle Ungar, Ling Liu, Aki-Hiro Sato, Toyotaro Suzumura, Sudarsan Rachuri, Rama Govindaraju, Weijia Xu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages563-569
Number of pages7
ISBN (Electronic)9781467390040
DOIs
StatePublished - 2016
Externally publishedYes
Event4th IEEE International Conference on Big Data, Big Data 2016 - Washington, United States
Duration: Dec 5 2016Dec 8 2016

Publication series

NameProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016

Conference

Conference4th IEEE International Conference on Big Data, Big Data 2016
Country/TerritoryUnited States
CityWashington
Period12/5/1612/8/16

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Transfer learning algorithms for autonomous reconfiguration of wearable systems'. Together they form a unique fingerprint.

Cite this