20 Scopus citations

Abstract

This paper describes the general procedure, model construction, and experimental results of tracking whole hand kinematics using extended Kalman filter (EKF) based on data recorded from active surface markers. We used a hand model with 29 degrees of freedom that consists of hand global posture, wrist, and digits. The marker protocol had 4 markers on the distal forearm and 20 markers on the dorsal surface of the joints of the digits. To reduce computational load, we divided the state space into four sub-spaces, each of which were estimated with an EKF in a specific order. We tested our framework and found reasonably accurate results (2-4 mm tip position error) when sampling tip to tip pinch at 120 Hz.

Original languageEnglish (US)
Title of host publication2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Pages4606-4609
Number of pages4
DOIs
StatePublished - 2010
Event2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 - Buenos Aires, Argentina
Duration: Aug 31 2010Sep 4 2010

Publication series

Name2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10

Other

Other2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
Country/TerritoryArgentina
CityBuenos Aires
Period8/31/109/4/10

ASJC Scopus subject areas

  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Health Informatics

Fingerprint

Dive into the research topics of 'Tracking whole hand kinematics using extended Kalman filter'. Together they form a unique fingerprint.

Cite this