Toward Graph Minimally-Supervised Learning

Kaize Ding, Chuxu Zhang, Jie Tang, Nitesh Chawla, Huan Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To model graph-structured data, graph learning, in particular deep graph learning with graph neural networks, has drawn much attention in both academic and industrial communities lately. The effectiveness of prevailing graph learning methods usually rely on abundant labeled data for model training. However, it is common that graphs are scarcely labeled since data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph learning with minimal human supervision for the low-resource settings where limited or even no labeled data is available. In this tutorial, we will focus on the state-of-the-art techniques of Graph Minimally-Supervised Learning, in particular a series of weakly-supervised learning, few-shot learning, and self-supervised learning methods on graph-structured data as well as their real-world applications. The objectives of this tutorial are to: (1) formally categorize the problems in graph minimally-supervised learning and discuss the challenges under different learning scenarios; (2) comprehensively review the existing and recent advances of graph minimally-supervised learning; and (3) elucidate open questions and future research directions. This tutorial introduces major topics within minimally-supervised learning and offers a guide to a new frontier of graph learning.

Original languageEnglish (US)
Title of host publicationKDD 2022 - Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages4782-4783
Number of pages2
ISBN (Electronic)9781450393850
DOIs
StatePublished - Aug 14 2022
Event28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022 - Washington, United States
Duration: Aug 14 2022Aug 18 2022

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2022
Country/TerritoryUnited States
CityWashington
Period8/14/228/18/22

Keywords

  • few-shot learning
  • graph neural networks
  • self-supervised learning
  • weakly-supervised learning

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Toward Graph Minimally-Supervised Learning'. Together they form a unique fingerprint.

Cite this