Time-resolved Raman studies of the photoexcited electron-hole plasma in InP

Kong-Thon Tsen, G. Halama, O. F. Sankey, S. C Y Tsen, H. Morkoc

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Both lateral and perpendicular transport properties of the photoexcited electron-hole plasma in n-type InP have been studied by the time-resolved Raman scattering technique with 30 m and 0.1 m spatial resolution, respectively, and on a picosecond time scale. The plasma density ranging from 1×1016 to 2×1017 cm-3 was deduced from fitting of the Raman spectra with the plasmonLO-phonon scattering theory which took into account the contributions from free holes. In contrast to the experimental results of Young and Wan who found that the ordinary diffusion equation was sufficient to fit their transient plasma density-time profiles in semi-insulating InP, our experimental results have shown that perpendicular transport (i.e., expansion into the bulk crystal) of the plasma in n-type InP can be very well described by a modified diffusion equation including the effect of drifting away from the surface based on a hydrodynamic model. The transient plasma density-time profiles were studied at T=300 K and for an initial injection plasma density n2×1017 cm-3. The plasma has been found to expand laterally at velocity v5×104 cm/s and perpendicularly into the crystal at a velocity vp1.5×105 cm/s.

Original languageEnglish (US)
Pages (from-to)8103-8106
Number of pages4
JournalPhysical Review B
Volume40
Issue number11
DOIs
StatePublished - Jan 1 1989

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Time-resolved Raman studies of the photoexcited electron-hole plasma in InP'. Together they form a unique fingerprint.

Cite this