Time-domain channel estimation for wideband millimeter wave systems with hybrid architecture

Kiran Venugopal, Ahmed Alkhateeb, Robert W. Heath, Nuria Gonzalez Prelcic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

34 Scopus citations

Abstract

Millimeter wave (mmWave) systems will likely employ large antennas at both the transmitter and receiver for directional beamforming. Hybrid analog/digital MIMO architectures have been proposed previously for leveraging both array gain and multiplexing gain, while reducing the power consumption in analog-to-digital converters. Channel knowledge is needed to design the hybrid precoders/combiners, which is difficult to obtain due to the large antenna arrays and the frequency selective nature of the channel. In this paper, we propose a sparse recovery based time-domain channel estimation technique for hybrid architecture based frequency selective mmWave systems. The proposed compressed sensing channel estimation algorithm is shown to provide good estimation error performance, while requiring small training overhead. The simulation results show that using multiple RF chains at the receiver and the transmitter further reduces the training overhead.

Original languageEnglish (US)
Title of host publication2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6493-6497
Number of pages5
ISBN (Electronic)9781509041176
DOIs
StatePublished - Jun 16 2017
Externally publishedYes
Event2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Duration: Mar 5 2017Mar 9 2017

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Country/TerritoryUnited States
CityNew Orleans
Period3/5/173/9/17

Keywords

  • Millimeter wave communication
  • channel estimation
  • compressed sensing
  • hybrid architecture

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Time-domain channel estimation for wideband millimeter wave systems with hybrid architecture'. Together they form a unique fingerprint.

Cite this