Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading

Yongming Liu, Sankaran Mahadevan

Research output: Contribution to journalArticle

56 Citations (Scopus)

Abstract

A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed to predict the fatigue crack growth rate under mixed-mode loading. A major advantage is the applicability of the proposed model to many different materials, which experience either shear or tensile dominated crack growth. The proposed model is also capable to nonproportional fatigue loading since the critical plane explicitly considers the influence of the load path. The predictions of the proposed fatigue crack growth model under constant amplitude loading are compared with a wide range of fatigue results in the literature. Excellent agreements between experimental data and model predictions are observed.

Original languageEnglish (US)
Pages (from-to)332-345
Number of pages14
JournalEngineering Fracture Mechanics
Volume74
Issue number3
DOIs
StatePublished - Feb 2007
Externally publishedYes

Fingerprint

Stress intensity factors
Crack propagation
Fatigue of materials
Fatigue crack propagation
Fatigue damage
Crack tips

Keywords

  • Crack growth
  • Fatigue crack
  • Mixed-mode loading
  • Threshold stress intensity factor

ASJC Scopus subject areas

  • Mechanical Engineering
  • Mechanics of Materials

Cite this

Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading. / Liu, Yongming; Mahadevan, Sankaran.

In: Engineering Fracture Mechanics, Vol. 74, No. 3, 02.2007, p. 332-345.

Research output: Contribution to journalArticle

@article{7feba85a412f4296bb2f5ec6236038cb,
title = "Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading",
abstract = "A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed to predict the fatigue crack growth rate under mixed-mode loading. A major advantage is the applicability of the proposed model to many different materials, which experience either shear or tensile dominated crack growth. The proposed model is also capable to nonproportional fatigue loading since the critical plane explicitly considers the influence of the load path. The predictions of the proposed fatigue crack growth model under constant amplitude loading are compared with a wide range of fatigue results in the literature. Excellent agreements between experimental data and model predictions are observed.",
keywords = "Crack growth, Fatigue crack, Mixed-mode loading, Threshold stress intensity factor",
author = "Yongming Liu and Sankaran Mahadevan",
year = "2007",
month = "2",
doi = "10.1016/j.engfracmech.2006.06.003",
language = "English (US)",
volume = "74",
pages = "332--345",
journal = "Engineering Fracture Mechanics",
issn = "0013-7944",
publisher = "Elsevier BV",
number = "3",

}

TY - JOUR

T1 - Threshold stress intensity factor and crack growth rate prediction under mixed-mode loading

AU - Liu, Yongming

AU - Mahadevan, Sankaran

PY - 2007/2

Y1 - 2007/2

N2 - A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed to predict the fatigue crack growth rate under mixed-mode loading. A major advantage is the applicability of the proposed model to many different materials, which experience either shear or tensile dominated crack growth. The proposed model is also capable to nonproportional fatigue loading since the critical plane explicitly considers the influence of the load path. The predictions of the proposed fatigue crack growth model under constant amplitude loading are compared with a wide range of fatigue results in the literature. Excellent agreements between experimental data and model predictions are observed.

AB - A new mixed-mode threshold stress intensity factor is developed using a critical plane-based multiaxial fatigue theory and the Kitagawa diagram. The proposed method is a nominal approach since the fatigue damage is evaluated using remote stresses acting on a cracked component rather than stresses near the crack tip. An equivalent stress intensity factor defined on the critical plane is proposed to predict the fatigue crack growth rate under mixed-mode loading. A major advantage is the applicability of the proposed model to many different materials, which experience either shear or tensile dominated crack growth. The proposed model is also capable to nonproportional fatigue loading since the critical plane explicitly considers the influence of the load path. The predictions of the proposed fatigue crack growth model under constant amplitude loading are compared with a wide range of fatigue results in the literature. Excellent agreements between experimental data and model predictions are observed.

KW - Crack growth

KW - Fatigue crack

KW - Mixed-mode loading

KW - Threshold stress intensity factor

UR - http://www.scopus.com/inward/record.url?scp=33750634190&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33750634190&partnerID=8YFLogxK

U2 - 10.1016/j.engfracmech.2006.06.003

DO - 10.1016/j.engfracmech.2006.06.003

M3 - Article

AN - SCOPUS:33750634190

VL - 74

SP - 332

EP - 345

JO - Engineering Fracture Mechanics

JF - Engineering Fracture Mechanics

SN - 0013-7944

IS - 3

ER -