Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms

A. Barty, S. Marchesini, H. N. Chapman, C. Cui, M. R. Howells, D. A. Shapiro, A. M. Minor, John Spence, Uwe Weierstall, J. Ilavsky, A. Noy, S. P. Hau-Riege, A. B. Artyukhin, T. Baumann, T. Willey, J. Stolken, T. Van Buuren, J. H. Kinney

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

Ultralow density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area, and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by x-ray diffractive imaging. Finite-element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion-limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.

Original languageEnglish (US)
Article number055501
JournalPhysical Review Letters
Volume101
Issue number5
DOIs
StatePublished - Jul 28 2008

Fingerprint

tantalum oxides
high strength
x ray diffraction
fragments
mechanical properties
ceramics
polymers
geometry
metals
x rays

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Barty, A., Marchesini, S., Chapman, H. N., Cui, C., Howells, M. R., Shapiro, D. A., ... Kinney, J. H. (2008). Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms. Physical Review Letters, 101(5), [055501]. https://doi.org/10.1103/PhysRevLett.101.055501

Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam : Determination of structural deformation mechanisms. / Barty, A.; Marchesini, S.; Chapman, H. N.; Cui, C.; Howells, M. R.; Shapiro, D. A.; Minor, A. M.; Spence, John; Weierstall, Uwe; Ilavsky, J.; Noy, A.; Hau-Riege, S. P.; Artyukhin, A. B.; Baumann, T.; Willey, T.; Stolken, J.; Van Buuren, T.; Kinney, J. H.

In: Physical Review Letters, Vol. 101, No. 5, 055501, 28.07.2008.

Research output: Contribution to journalArticle

Barty, A, Marchesini, S, Chapman, HN, Cui, C, Howells, MR, Shapiro, DA, Minor, AM, Spence, J, Weierstall, U, Ilavsky, J, Noy, A, Hau-Riege, SP, Artyukhin, AB, Baumann, T, Willey, T, Stolken, J, Van Buuren, T & Kinney, JH 2008, 'Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms', Physical Review Letters, vol. 101, no. 5, 055501. https://doi.org/10.1103/PhysRevLett.101.055501
Barty, A. ; Marchesini, S. ; Chapman, H. N. ; Cui, C. ; Howells, M. R. ; Shapiro, D. A. ; Minor, A. M. ; Spence, John ; Weierstall, Uwe ; Ilavsky, J. ; Noy, A. ; Hau-Riege, S. P. ; Artyukhin, A. B. ; Baumann, T. ; Willey, T. ; Stolken, J. ; Van Buuren, T. ; Kinney, J. H. / Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam : Determination of structural deformation mechanisms. In: Physical Review Letters. 2008 ; Vol. 101, No. 5.
@article{2542bb0b208b4a7aa5c07c242b6664f2,
title = "Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms",
abstract = "Ultralow density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area, and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by x-ray diffractive imaging. Finite-element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion-limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.",
author = "A. Barty and S. Marchesini and Chapman, {H. N.} and C. Cui and Howells, {M. R.} and Shapiro, {D. A.} and Minor, {A. M.} and John Spence and Uwe Weierstall and J. Ilavsky and A. Noy and Hau-Riege, {S. P.} and Artyukhin, {A. B.} and T. Baumann and T. Willey and J. Stolken and {Van Buuren}, T. and Kinney, {J. H.}",
year = "2008",
month = "7",
day = "28",
doi = "10.1103/PhysRevLett.101.055501",
language = "English (US)",
volume = "101",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "5",

}

TY - JOUR

T1 - Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam

T2 - Determination of structural deformation mechanisms

AU - Barty, A.

AU - Marchesini, S.

AU - Chapman, H. N.

AU - Cui, C.

AU - Howells, M. R.

AU - Shapiro, D. A.

AU - Minor, A. M.

AU - Spence, John

AU - Weierstall, Uwe

AU - Ilavsky, J.

AU - Noy, A.

AU - Hau-Riege, S. P.

AU - Artyukhin, A. B.

AU - Baumann, T.

AU - Willey, T.

AU - Stolken, J.

AU - Van Buuren, T.

AU - Kinney, J. H.

PY - 2008/7/28

Y1 - 2008/7/28

N2 - Ultralow density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area, and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by x-ray diffractive imaging. Finite-element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion-limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.

AB - Ultralow density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area, and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by x-ray diffractive imaging. Finite-element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion-limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.

UR - http://www.scopus.com/inward/record.url?scp=48849095217&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=48849095217&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.101.055501

DO - 10.1103/PhysRevLett.101.055501

M3 - Article

C2 - 18764404

AN - SCOPUS:48849095217

VL - 101

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 5

M1 - 055501

ER -